MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulclsr Structured version   Unicode version

Theorem mulclsr 8951
Description: Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulclsr  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  .R  B
)  e.  R. )

Proof of Theorem mulclsr
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 8927 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 6080 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  =  ( A  .R  [ <. z ,  w >. ]  ~R  ) )
32eleq1d 2501 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  )  <->  ( A  .R  [ <. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  ) ) )
4 oveq2 6081 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  .R  [ <. z ,  w >. ]  ~R  )  =  ( A  .R  B ) )
54eleq1d 2501 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( A  .R  [
<. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  )  <->  ( A  .R  B )  e.  ( ( P.  X.  P. ) /.  ~R  ) ) )
6 mulsrpr 8943 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
7 mulclpr 8889 . . . . . . . 8  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  .P.  z
)  e.  P. )
8 mulclpr 8889 . . . . . . . 8  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  .P.  w
)  e.  P. )
9 addclpr 8887 . . . . . . . 8  |-  ( ( ( x  .P.  z
)  e.  P.  /\  ( y  .P.  w
)  e.  P. )  ->  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )
107, 8, 9syl2an 464 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  z  e.  P. )  /\  ( y  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
1110an4s 800 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
12 mulclpr 8889 . . . . . . . 8  |-  ( ( x  e.  P.  /\  w  e.  P. )  ->  ( x  .P.  w
)  e.  P. )
13 mulclpr 8889 . . . . . . . 8  |-  ( ( y  e.  P.  /\  z  e.  P. )  ->  ( y  .P.  z
)  e.  P. )
14 addclpr 8887 . . . . . . . 8  |-  ( ( ( x  .P.  w
)  e.  P.  /\  ( y  .P.  z
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )
1512, 13, 14syl2an 464 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  w  e.  P. )  /\  ( y  e.  P.  /\  z  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
1615an42s 801 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. )
1711, 16jca 519 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P.  /\  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  e.  P. ) )
18 opelxpi 4902 . . . . 5  |-  ( ( ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P.  /\  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  e.  P. )  -> 
<. ( ( x  .P.  z )  +P.  (
y  .P.  w )
) ,  ( ( x  .P.  w )  +P.  ( y  .P.  z ) ) >.  e.  ( P.  X.  P. ) )
19 enrex 8937 . . . . . 6  |-  ~R  e.  _V
2019ecelqsi 6952 . . . . 5  |-  ( <.
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ,  ( ( x  .P.  w )  +P.  ( y  .P.  z ) ) >.  e.  ( P.  X.  P. )  ->  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
2117, 18, 203syl 19 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
226, 21eqeltrd 2509 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  e.  ( ( P.  X.  P. ) /.  ~R  ) )
231, 3, 5, 222ecoptocl 6987 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  .R  B
)  e.  ( ( P.  X.  P. ) /.  ~R  ) )
2423, 1syl6eleqr 2526 1  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  .R  B
)  e.  R. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   <.cop 3809    X. cxp 4868  (class class class)co 6073   [cec 6895   /.cqs 6896   P.cnp 8726    +P. cpp 8728    .P. cmp 8729    ~R cer 8733   R.cnr 8734    .R cmr 8739
This theorem is referenced by:  dmmulsr  8953  negexsr  8969  sqgt0sr  8973  recexsr  8974  map2psrpr  8977  mulresr  9006  axmulf  9013  axmulrcl  9021  axmulass  9024  axdistr  9025  axrnegex  9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-omul 6721  df-er 6897  df-ec 6899  df-qs 6903  df-ni 8741  df-pli 8742  df-mi 8743  df-lti 8744  df-plpq 8777  df-mpq 8778  df-ltpq 8779  df-enq 8780  df-nq 8781  df-erq 8782  df-plq 8783  df-mq 8784  df-1nq 8785  df-rq 8786  df-ltnq 8787  df-np 8850  df-plp 8852  df-mp 8853  df-ltp 8854  df-mpr 8925  df-enr 8926  df-nr 8927  df-mr 8929
  Copyright terms: Public domain W3C validator