MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcmpblnrlem Unicode version

Theorem mulcmpblnrlem 8695
Description: Lemma used in lemma showing compatibility of multiplication. (Contributed by NM, 4-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcmpblnrlem  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( D  .P.  F
)  +P.  ( (
( A  .P.  F
)  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F
)  +P.  ( (
( A  .P.  G
)  +P.  ( B  .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D  .P.  S ) ) ) ) )

Proof of Theorem mulcmpblnrlem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5865 . . . . . . . . 9  |-  ( ( A  +P.  D )  =  ( B  +P.  C )  ->  ( ( A  +P.  D )  .P. 
F )  =  ( ( B  +P.  C
)  .P.  F )
)
2 distrpr 8652 . . . . . . . . . 10  |-  ( F  .P.  ( A  +P.  D ) )  =  ( ( F  .P.  A
)  +P.  ( F  .P.  D ) )
3 mulcompr 8647 . . . . . . . . . 10  |-  ( ( A  +P.  D )  .P.  F )  =  ( F  .P.  ( A  +P.  D ) )
4 mulcompr 8647 . . . . . . . . . . 11  |-  ( A  .P.  F )  =  ( F  .P.  A
)
5 mulcompr 8647 . . . . . . . . . . 11  |-  ( D  .P.  F )  =  ( F  .P.  D
)
64, 5oveq12i 5870 . . . . . . . . . 10  |-  ( ( A  .P.  F )  +P.  ( D  .P.  F ) )  =  ( ( F  .P.  A
)  +P.  ( F  .P.  D ) )
72, 3, 63eqtr4i 2313 . . . . . . . . 9  |-  ( ( A  +P.  D )  .P.  F )  =  ( ( A  .P.  F )  +P.  ( D  .P.  F ) )
8 distrpr 8652 . . . . . . . . . 10  |-  ( F  .P.  ( B  +P.  C ) )  =  ( ( F  .P.  B
)  +P.  ( F  .P.  C ) )
9 mulcompr 8647 . . . . . . . . . 10  |-  ( ( B  +P.  C )  .P.  F )  =  ( F  .P.  ( B  +P.  C ) )
10 mulcompr 8647 . . . . . . . . . . 11  |-  ( B  .P.  F )  =  ( F  .P.  B
)
11 mulcompr 8647 . . . . . . . . . . 11  |-  ( C  .P.  F )  =  ( F  .P.  C
)
1210, 11oveq12i 5870 . . . . . . . . . 10  |-  ( ( B  .P.  F )  +P.  ( C  .P.  F ) )  =  ( ( F  .P.  B
)  +P.  ( F  .P.  C ) )
138, 9, 123eqtr4i 2313 . . . . . . . . 9  |-  ( ( B  +P.  C )  .P.  F )  =  ( ( B  .P.  F )  +P.  ( C  .P.  F ) )
141, 7, 133eqtr3g 2338 . . . . . . . 8  |-  ( ( A  +P.  D )  =  ( B  +P.  C )  ->  ( ( A  .P.  F )  +P.  ( D  .P.  F
) )  =  ( ( B  .P.  F
)  +P.  ( C  .P.  F ) ) )
1514oveq1d 5873 . . . . . . 7  |-  ( ( A  +P.  D )  =  ( B  +P.  C )  ->  ( (
( A  .P.  F
)  +P.  ( D  .P.  F ) )  +P.  ( C  .P.  S
) )  =  ( ( ( B  .P.  F )  +P.  ( C  .P.  F ) )  +P.  ( C  .P.  S ) ) )
16 addasspr 8646 . . . . . . . 8  |-  ( ( ( B  .P.  F
)  +P.  ( C  .P.  F ) )  +P.  ( C  .P.  S
) )  =  ( ( B  .P.  F
)  +P.  ( ( C  .P.  F )  +P.  ( C  .P.  S
) ) )
17 oveq2 5866 . . . . . . . . . 10  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( C  .P.  ( F  +P.  S
) )  =  ( C  .P.  ( G  +P.  R ) ) )
18 distrpr 8652 . . . . . . . . . 10  |-  ( C  .P.  ( F  +P.  S ) )  =  ( ( C  .P.  F
)  +P.  ( C  .P.  S ) )
19 distrpr 8652 . . . . . . . . . 10  |-  ( C  .P.  ( G  +P.  R ) )  =  ( ( C  .P.  G
)  +P.  ( C  .P.  R ) )
2017, 18, 193eqtr3g 2338 . . . . . . . . 9  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( ( C  .P.  F )  +P.  ( C  .P.  S
) )  =  ( ( C  .P.  G
)  +P.  ( C  .P.  R ) ) )
2120oveq2d 5874 . . . . . . . 8  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( ( B  .P.  F )  +P.  ( ( C  .P.  F )  +P.  ( C  .P.  S ) ) )  =  ( ( B  .P.  F )  +P.  ( ( C  .P.  G )  +P.  ( C  .P.  R
) ) ) )
2216, 21syl5eq 2327 . . . . . . 7  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( (
( B  .P.  F
)  +P.  ( C  .P.  F ) )  +P.  ( C  .P.  S
) )  =  ( ( B  .P.  F
)  +P.  ( ( C  .P.  G )  +P.  ( C  .P.  R
) ) ) )
2315, 22sylan9eq 2335 . . . . . 6  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( ( A  .P.  F )  +P.  ( D  .P.  F ) )  +P.  ( C  .P.  S ) )  =  ( ( B  .P.  F
)  +P.  ( ( C  .P.  G )  +P.  ( C  .P.  R
) ) ) )
24 ovex 5883 . . . . . . 7  |-  ( A  .P.  F )  e. 
_V
25 ovex 5883 . . . . . . 7  |-  ( D  .P.  F )  e. 
_V
26 ovex 5883 . . . . . . 7  |-  ( C  .P.  S )  e. 
_V
27 addcompr 8645 . . . . . . 7  |-  ( x  +P.  y )  =  ( y  +P.  x
)
28 addasspr 8646 . . . . . . 7  |-  ( ( x  +P.  y )  +P.  z )  =  ( x  +P.  (
y  +P.  z )
)
2924, 25, 26, 27, 28caov32 6047 . . . . . 6  |-  ( ( ( A  .P.  F
)  +P.  ( D  .P.  F ) )  +P.  ( C  .P.  S
) )  =  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  ( D  .P.  F ) )
30 ovex 5883 . . . . . . 7  |-  ( B  .P.  F )  e. 
_V
31 ovex 5883 . . . . . . 7  |-  ( C  .P.  G )  e. 
_V
32 ovex 5883 . . . . . . 7  |-  ( C  .P.  R )  e. 
_V
3330, 31, 32, 27, 28caov12 6048 . . . . . 6  |-  ( ( B  .P.  F )  +P.  ( ( C  .P.  G )  +P.  ( C  .P.  R
) ) )  =  ( ( C  .P.  G )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) )
3423, 29, 333eqtr3g 2338 . . . . 5  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  ( D  .P.  F ) )  =  ( ( C  .P.  G
)  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R
) ) ) )
3534oveq2d 5874 . . . 4  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  ( D  .P.  F ) ) )  =  ( ( ( B  .P.  G
)  +P.  ( D  .P.  R ) )  +P.  ( ( C  .P.  G )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) ) ) )
36 oveq2 5866 . . . . . . . . . . 11  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( D  .P.  ( F  +P.  S
) )  =  ( D  .P.  ( G  +P.  R ) ) )
37 distrpr 8652 . . . . . . . . . . 11  |-  ( D  .P.  ( F  +P.  S ) )  =  ( ( D  .P.  F
)  +P.  ( D  .P.  S ) )
38 distrpr 8652 . . . . . . . . . . 11  |-  ( D  .P.  ( G  +P.  R ) )  =  ( ( D  .P.  G
)  +P.  ( D  .P.  R ) )
3936, 37, 383eqtr3g 2338 . . . . . . . . . 10  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( ( D  .P.  F )  +P.  ( D  .P.  S
) )  =  ( ( D  .P.  G
)  +P.  ( D  .P.  R ) ) )
4039oveq2d 5874 . . . . . . . . 9  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( ( A  .P.  G )  +P.  ( ( D  .P.  F )  +P.  ( D  .P.  S ) ) )  =  ( ( A  .P.  G )  +P.  ( ( D  .P.  G )  +P.  ( D  .P.  R
) ) ) )
41 addasspr 8646 . . . . . . . . 9  |-  ( ( ( A  .P.  G
)  +P.  ( D  .P.  G ) )  +P.  ( D  .P.  R
) )  =  ( ( A  .P.  G
)  +P.  ( ( D  .P.  G )  +P.  ( D  .P.  R
) ) )
4240, 41syl6eqr 2333 . . . . . . . 8  |-  ( ( F  +P.  S )  =  ( G  +P.  R )  ->  ( ( A  .P.  G )  +P.  ( ( D  .P.  F )  +P.  ( D  .P.  S ) ) )  =  ( ( ( A  .P.  G
)  +P.  ( D  .P.  G ) )  +P.  ( D  .P.  R
) ) )
43 oveq1 5865 . . . . . . . . . 10  |-  ( ( A  +P.  D )  =  ( B  +P.  C )  ->  ( ( A  +P.  D )  .P. 
G )  =  ( ( B  +P.  C
)  .P.  G )
)
44 distrpr 8652 . . . . . . . . . . 11  |-  ( G  .P.  ( A  +P.  D ) )  =  ( ( G  .P.  A
)  +P.  ( G  .P.  D ) )
45 mulcompr 8647 . . . . . . . . . . 11  |-  ( ( A  +P.  D )  .P.  G )  =  ( G  .P.  ( A  +P.  D ) )
46 mulcompr 8647 . . . . . . . . . . . 12  |-  ( A  .P.  G )  =  ( G  .P.  A
)
47 mulcompr 8647 . . . . . . . . . . . 12  |-  ( D  .P.  G )  =  ( G  .P.  D
)
4846, 47oveq12i 5870 . . . . . . . . . . 11  |-  ( ( A  .P.  G )  +P.  ( D  .P.  G ) )  =  ( ( G  .P.  A
)  +P.  ( G  .P.  D ) )
4944, 45, 483eqtr4i 2313 . . . . . . . . . 10  |-  ( ( A  +P.  D )  .P.  G )  =  ( ( A  .P.  G )  +P.  ( D  .P.  G ) )
50 distrpr 8652 . . . . . . . . . . 11  |-  ( G  .P.  ( B  +P.  C ) )  =  ( ( G  .P.  B
)  +P.  ( G  .P.  C ) )
51 mulcompr 8647 . . . . . . . . . . 11  |-  ( ( B  +P.  C )  .P.  G )  =  ( G  .P.  ( B  +P.  C ) )
52 mulcompr 8647 . . . . . . . . . . . 12  |-  ( B  .P.  G )  =  ( G  .P.  B
)
53 mulcompr 8647 . . . . . . . . . . . 12  |-  ( C  .P.  G )  =  ( G  .P.  C
)
5452, 53oveq12i 5870 . . . . . . . . . . 11  |-  ( ( B  .P.  G )  +P.  ( C  .P.  G ) )  =  ( ( G  .P.  B
)  +P.  ( G  .P.  C ) )
5550, 51, 543eqtr4i 2313 . . . . . . . . . 10  |-  ( ( B  +P.  C )  .P.  G )  =  ( ( B  .P.  G )  +P.  ( C  .P.  G ) )
5643, 49, 553eqtr3g 2338 . . . . . . . . 9  |-  ( ( A  +P.  D )  =  ( B  +P.  C )  ->  ( ( A  .P.  G )  +P.  ( D  .P.  G
) )  =  ( ( B  .P.  G
)  +P.  ( C  .P.  G ) ) )
5756oveq1d 5873 . . . . . . . 8  |-  ( ( A  +P.  D )  =  ( B  +P.  C )  ->  ( (
( A  .P.  G
)  +P.  ( D  .P.  G ) )  +P.  ( D  .P.  R
) )  =  ( ( ( B  .P.  G )  +P.  ( C  .P.  G ) )  +P.  ( D  .P.  R ) ) )
5842, 57sylan9eqr 2337 . . . . . . 7  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( A  .P.  G
)  +P.  ( ( D  .P.  F )  +P.  ( D  .P.  S
) ) )  =  ( ( ( B  .P.  G )  +P.  ( C  .P.  G
) )  +P.  ( D  .P.  R ) ) )
59 ovex 5883 . . . . . . . 8  |-  ( A  .P.  G )  e. 
_V
60 ovex 5883 . . . . . . . 8  |-  ( D  .P.  S )  e. 
_V
6159, 25, 60, 27, 28caov12 6048 . . . . . . 7  |-  ( ( A  .P.  G )  +P.  ( ( D  .P.  F )  +P.  ( D  .P.  S
) ) )  =  ( ( D  .P.  F )  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S ) ) )
62 ovex 5883 . . . . . . . 8  |-  ( B  .P.  G )  e. 
_V
63 ovex 5883 . . . . . . . 8  |-  ( D  .P.  R )  e. 
_V
6462, 31, 63, 27, 28caov32 6047 . . . . . . 7  |-  ( ( ( B  .P.  G
)  +P.  ( C  .P.  G ) )  +P.  ( D  .P.  R
) )  =  ( ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  ( C  .P.  G ) )
6558, 61, 643eqtr3g 2338 . . . . . 6  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( D  .P.  F
)  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S
) ) )  =  ( ( ( B  .P.  G )  +P.  ( D  .P.  R
) )  +P.  ( C  .P.  G ) ) )
6665oveq1d 5873 . . . . 5  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( ( D  .P.  F )  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S ) ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) )  =  ( ( ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  ( C  .P.  G ) )  +P.  (
( B  .P.  F
)  +P.  ( C  .P.  R ) ) ) )
67 addasspr 8646 . . . . 5  |-  ( ( ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  ( C  .P.  G ) )  +P.  (
( B  .P.  F
)  +P.  ( C  .P.  R ) ) )  =  ( ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  (
( C  .P.  G
)  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R
) ) ) )
6866, 67syl6eq 2331 . . . 4  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( ( D  .P.  F )  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S ) ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) )  =  ( ( ( B  .P.  G
)  +P.  ( D  .P.  R ) )  +P.  ( ( C  .P.  G )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) ) ) )
6935, 68eqtr4d 2318 . . 3  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( ( B  .P.  G )  +P.  ( D  .P.  R ) )  +P.  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  ( D  .P.  F ) ) )  =  ( ( ( D  .P.  F
)  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S
) ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) ) )
70 ovex 5883 . . . 4  |-  ( ( B  .P.  G )  +P.  ( D  .P.  R ) )  e.  _V
71 ovex 5883 . . . 4  |-  ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  e.  _V
7270, 71, 25, 27, 28caov13 6050 . . 3  |-  ( ( ( B  .P.  G
)  +P.  ( D  .P.  R ) )  +P.  ( ( ( A  .P.  F )  +P.  ( C  .P.  S
) )  +P.  ( D  .P.  F ) ) )  =  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  (
( B  .P.  G
)  +P.  ( D  .P.  R ) ) ) )
73 addasspr 8646 . . 3  |-  ( ( ( D  .P.  F
)  +P.  ( ( A  .P.  G )  +P.  ( D  .P.  S
) ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) )  =  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  G )  +P.  ( D  .P.  S ) )  +P.  (
( B  .P.  F
)  +P.  ( C  .P.  R ) ) ) )
7469, 72, 733eqtr3g 2338 . 2  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( D  .P.  F
)  +P.  ( (
( A  .P.  F
)  +P.  ( C  .P.  S ) )  +P.  ( ( B  .P.  G )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F
)  +P.  ( (
( A  .P.  G
)  +P.  ( D  .P.  S ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) ) ) )
7524, 26, 62, 27, 28, 63caov4 6051 . . 3  |-  ( ( ( A  .P.  F
)  +P.  ( C  .P.  S ) )  +P.  ( ( B  .P.  G )  +P.  ( D  .P.  R ) ) )  =  ( ( ( A  .P.  F
)  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R ) ) )
7675oveq2i 5869 . 2  |-  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  F )  +P.  ( C  .P.  S ) )  +P.  (
( B  .P.  G
)  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  F )  +P.  ( B  .P.  G ) )  +P.  (
( C  .P.  S
)  +P.  ( D  .P.  R ) ) ) )
7759, 60, 30, 27, 28, 32caov42 6053 . . 3  |-  ( ( ( A  .P.  G
)  +P.  ( D  .P.  S ) )  +P.  ( ( B  .P.  F )  +P.  ( C  .P.  R ) ) )  =  ( ( ( A  .P.  G
)  +P.  ( B  .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D  .P.  S ) ) )
7877oveq2i 5869 . 2  |-  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  G )  +P.  ( D  .P.  S ) )  +P.  (
( B  .P.  F
)  +P.  ( C  .P.  R ) ) ) )  =  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  G )  +P.  ( B  .P.  F ) )  +P.  (
( C  .P.  R
)  +P.  ( D  .P.  S ) ) ) )
7974, 76, 783eqtr3g 2338 1  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( D  .P.  F
)  +P.  ( (
( A  .P.  F
)  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F
)  +P.  ( (
( A  .P.  G
)  +P.  ( B  .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D  .P.  S ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623  (class class class)co 5858    +P. cpp 8483    .P. cmp 8484
This theorem is referenced by:  mulcmpblnr  8696
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ni 8496  df-pli 8497  df-mi 8498  df-lti 8499  df-plpq 8532  df-mpq 8533  df-ltpq 8534  df-enq 8535  df-nq 8536  df-erq 8537  df-plq 8538  df-mq 8539  df-1nq 8540  df-rq 8541  df-ltnq 8542  df-np 8605  df-plp 8607  df-mp 8608
  Copyright terms: Public domain W3C validator