MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcnsr Structured version   Unicode version

Theorem mulcnsr 9003
Description: Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcnsr  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D ) ) >.
)

Proof of Theorem mulcnsr
Dummy variables  x  y  z  w  v  u  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4419 . 2  |-  <. (
( A  .R  C
)  +R  ( -1R 
.R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >.  e.  _V
2 oveq1 6080 . . . . 5  |-  ( w  =  A  ->  (
w  .R  u )  =  ( A  .R  u ) )
3 oveq1 6080 . . . . . 6  |-  ( v  =  B  ->  (
v  .R  f )  =  ( B  .R  f ) )
43oveq2d 6089 . . . . 5  |-  ( v  =  B  ->  ( -1R  .R  ( v  .R  f ) )  =  ( -1R  .R  ( B  .R  f ) ) )
52, 4oveqan12d 6092 . . . 4  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( w  .R  u )  +R  ( -1R  .R  ( v  .R  f ) ) )  =  ( ( A  .R  u )  +R  ( -1R  .R  ( B  .R  f ) ) ) )
6 oveq1 6080 . . . . 5  |-  ( v  =  B  ->  (
v  .R  u )  =  ( B  .R  u ) )
7 oveq1 6080 . . . . 5  |-  ( w  =  A  ->  (
w  .R  f )  =  ( A  .R  f ) )
86, 7oveqan12rd 6093 . . . 4  |-  ( ( w  =  A  /\  v  =  B )  ->  ( ( v  .R  u )  +R  (
w  .R  f )
)  =  ( ( B  .R  u )  +R  ( A  .R  f ) ) )
95, 8opeq12d 3984 . . 3  |-  ( ( w  =  A  /\  v  =  B )  -> 
<. ( ( w  .R  u )  +R  ( -1R  .R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >.  =  <. ( ( A  .R  u
)  +R  ( -1R 
.R  ( B  .R  f ) ) ) ,  ( ( B  .R  u )  +R  ( A  .R  f
) ) >. )
10 oveq2 6081 . . . . 5  |-  ( u  =  C  ->  ( A  .R  u )  =  ( A  .R  C
) )
11 oveq2 6081 . . . . . 6  |-  ( f  =  D  ->  ( B  .R  f )  =  ( B  .R  D
) )
1211oveq2d 6089 . . . . 5  |-  ( f  =  D  ->  ( -1R  .R  ( B  .R  f ) )  =  ( -1R  .R  ( B  .R  D ) ) )
1310, 12oveqan12d 6092 . . . 4  |-  ( ( u  =  C  /\  f  =  D )  ->  ( ( A  .R  u )  +R  ( -1R  .R  ( B  .R  f ) ) )  =  ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) )
14 oveq2 6081 . . . . 5  |-  ( u  =  C  ->  ( B  .R  u )  =  ( B  .R  C
) )
15 oveq2 6081 . . . . 5  |-  ( f  =  D  ->  ( A  .R  f )  =  ( A  .R  D
) )
1614, 15oveqan12d 6092 . . . 4  |-  ( ( u  =  C  /\  f  =  D )  ->  ( ( B  .R  u )  +R  ( A  .R  f ) )  =  ( ( B  .R  C )  +R  ( A  .R  D
) ) )
1713, 16opeq12d 3984 . . 3  |-  ( ( u  =  C  /\  f  =  D )  -> 
<. ( ( A  .R  u )  +R  ( -1R  .R  ( B  .R  f ) ) ) ,  ( ( B  .R  u )  +R  ( A  .R  f
) ) >.  =  <. ( ( A  .R  C
)  +R  ( -1R 
.R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. )
189, 17sylan9eq 2487 . 2  |-  ( ( ( w  =  A  /\  v  =  B )  /\  ( u  =  C  /\  f  =  D ) )  ->  <. ( ( w  .R  u )  +R  ( -1R  .R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >.  =  <. ( ( A  .R  C
)  +R  ( -1R 
.R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D
) ) >. )
19 df-mul 8994 . . 3  |-  x.  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
20 df-c 8988 . . . . . . 7  |-  CC  =  ( R.  X.  R. )
2120eleq2i 2499 . . . . . 6  |-  ( x  e.  CC  <->  x  e.  ( R.  X.  R. )
)
2220eleq2i 2499 . . . . . 6  |-  ( y  e.  CC  <->  y  e.  ( R.  X.  R. )
)
2321, 22anbi12i 679 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  <->  ( x  e.  ( R. 
X.  R. )  /\  y  e.  ( R.  X.  R. ) ) )
2423anbi1i 677 . . . 4  |-  ( ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
)  <->  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. ) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) )
2524oprabbii 6121 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
2619, 25eqtri 2455 . 2  |-  x.  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( R.  X.  R. )  /\  y  e.  ( R.  X.  R. )
)  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  <. ( ( w  .R  u
)  +R  ( -1R 
.R  ( v  .R  f ) ) ) ,  ( ( v  .R  u )  +R  ( w  .R  f
) ) >. )
) }
271, 18, 26ov3 6202 1  |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. )
)  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  ( ( B  .R  C )  +R  ( A  .R  D ) ) >.
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   <.cop 3809    X. cxp 4868  (class class class)co 6073   {coprab 6074   R.cnr 8734   -1Rcm1r 8737    +R cplr 8738    .R cmr 8739   CCcc 8980    x. cmul 8987
This theorem is referenced by:  mulresr  9006  mulcnsrec  9011  axmulf  9013  axi2m1  9026  axcnre  9031
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fv 5454  df-ov 6076  df-oprab 6077  df-c 8988  df-mul 8994
  Copyright terms: Public domain W3C validator