MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcomsr Unicode version

Theorem mulcomsr 8711
Description: Multiplication of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.)
Assertion
Ref Expression
mulcomsr  |-  ( A  .R  B )  =  ( B  .R  A
)

Proof of Theorem mulcomsr
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 8682 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 mulsrpr 8698 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
3 mulsrpr 8698 . . 3  |-  ( ( ( z  e.  P.  /\  w  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. z ,  w >. ]  ~R  .R  [ <. x ,  y >. ]  ~R  )  =  [ <. (
( z  .P.  x
)  +P.  ( w  .P.  y ) ) ,  ( ( z  .P.  y )  +P.  (
w  .P.  x )
) >. ]  ~R  )
4 mulcompr 8647 . . . 4  |-  ( x  .P.  z )  =  ( z  .P.  x
)
5 mulcompr 8647 . . . 4  |-  ( y  .P.  w )  =  ( w  .P.  y
)
64, 5oveq12i 5870 . . 3  |-  ( ( x  .P.  z )  +P.  ( y  .P.  w ) )  =  ( ( z  .P.  x )  +P.  (
w  .P.  y )
)
7 mulcompr 8647 . . . . 5  |-  ( x  .P.  w )  =  ( w  .P.  x
)
8 mulcompr 8647 . . . . 5  |-  ( y  .P.  z )  =  ( z  .P.  y
)
97, 8oveq12i 5870 . . . 4  |-  ( ( x  .P.  w )  +P.  ( y  .P.  z ) )  =  ( ( w  .P.  x )  +P.  (
z  .P.  y )
)
10 addcompr 8645 . . . 4  |-  ( ( w  .P.  x )  +P.  ( z  .P.  y ) )  =  ( ( z  .P.  y )  +P.  (
w  .P.  x )
)
119, 10eqtri 2303 . . 3  |-  ( ( x  .P.  w )  +P.  ( y  .P.  z ) )  =  ( ( z  .P.  y )  +P.  (
w  .P.  x )
)
121, 2, 3, 6, 11ecovcom 6769 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( A  .R  B
)  =  ( B  .R  A ) )
13 dmmulsr 8708 . . 3  |-  dom  .R  =  ( R.  X.  R. )
1413ndmovcom 6007 . 2  |-  ( -.  ( A  e.  R.  /\  B  e.  R. )  ->  ( A  .R  B
)  =  ( B  .R  A ) )
1512, 14pm2.61i 156 1  |-  ( A  .R  B )  =  ( B  .R  A
)
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1623    e. wcel 1684  (class class class)co 5858   P.cnp 8481    +P. cpp 8483    .P. cmp 8484    ~R cer 8488   R.cnr 8489    .R cmr 8494
This theorem is referenced by:  sqgt0sr  8728  mulresr  8761  axmulcom  8777  axmulass  8779  axcnre  8786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ec 6662  df-qs 6666  df-ni 8496  df-pli 8497  df-mi 8498  df-lti 8499  df-plpq 8532  df-mpq 8533  df-ltpq 8534  df-enq 8535  df-nq 8536  df-erq 8537  df-plq 8538  df-mq 8539  df-1nq 8540  df-rq 8541  df-ltnq 8542  df-np 8605  df-plp 8607  df-mp 8608  df-ltp 8609  df-mpr 8680  df-enr 8681  df-nr 8682  df-mr 8684
  Copyright terms: Public domain W3C validator