MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcxp Structured version   Unicode version

Theorem mulcxp 20578
Description: Complex exponentiation of a product. Proposition 10-4.2(c) of [Gleason] p. 135. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
mulcxp  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) ) )

Proof of Theorem mulcxp
StepHypRef Expression
1 simp1l 982 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  A  e.  RR )
21recnd 9116 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  A  e.  CC )
32mul01d 9267 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( A  x.  0 )  =  0 )
43oveq1d 6098 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( A  x.  0 )  ^ c  C )  =  ( 0  ^ c  C
) )
5 simp3 960 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  C  e.  CC )
62, 5mulcxplem 20577 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( 0  ^ c  C )  =  ( ( A  ^ c  C )  x.  (
0  ^ c  C
) ) )
74, 6eqtrd 2470 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( A  x.  0 )  ^ c  C )  =  ( ( A  ^ c  C )  x.  (
0  ^ c  C
) ) )
8 oveq2 6091 . . . . 5  |-  ( B  =  0  ->  ( A  x.  B )  =  ( A  x.  0 ) )
98oveq1d 6098 . . . 4  |-  ( B  =  0  ->  (
( A  x.  B
)  ^ c  C
)  =  ( ( A  x.  0 )  ^ c  C ) )
10 oveq1 6090 . . . . 5  |-  ( B  =  0  ->  ( B  ^ c  C )  =  ( 0  ^ c  C ) )
1110oveq2d 6099 . . . 4  |-  ( B  =  0  ->  (
( A  ^ c  C )  x.  ( B  ^ c  C ) )  =  ( ( A  ^ c  C
)  x.  ( 0  ^ c  C ) ) )
129, 11eqeq12d 2452 . . 3  |-  ( B  =  0  ->  (
( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) )  <->  ( ( A  x.  0 )  ^ c  C )  =  ( ( A  ^ c  C )  x.  (
0  ^ c  C
) ) ) )
137, 12syl5ibrcom 215 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( B  =  0  ->  ( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) ) ) )
14 simp2l 984 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  B  e.  RR )
1514recnd 9116 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  B  e.  CC )
1615mul02d 9266 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( 0  x.  B )  =  0 )
1716oveq1d 6098 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( 0  x.  B )  ^ c  C )  =  ( 0  ^ c  C
) )
1815, 5mulcxplem 20577 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( 0  ^ c  C )  =  ( ( B  ^ c  C )  x.  (
0  ^ c  C
) ) )
19 cxpcl 20567 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  ^ c  C )  e.  CC )
2015, 5, 19syl2anc 644 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( B  ^ c  C )  e.  CC )
21 0cn 9086 . . . . . . . . 9  |-  0  e.  CC
22 cxpcl 20567 . . . . . . . . 9  |-  ( ( 0  e.  CC  /\  C  e.  CC )  ->  ( 0  ^ c  C )  e.  CC )
2321, 5, 22sylancr 646 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( 0  ^ c  C )  e.  CC )
2420, 23mulcomd 9111 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( B  ^ c  C )  x.  ( 0  ^ c  C ) )  =  ( ( 0  ^ c  C )  x.  ( B  ^ c  C ) ) )
2518, 24eqtrd 2470 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( 0  ^ c  C )  =  ( ( 0  ^ c  C )  x.  ( B  ^ c  C ) ) )
2617, 25eqtrd 2470 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( 0  x.  B )  ^ c  C )  =  ( ( 0  ^ c  C )  x.  ( B  ^ c  C ) ) )
27 oveq1 6090 . . . . . . 7  |-  ( A  =  0  ->  ( A  x.  B )  =  ( 0  x.  B ) )
2827oveq1d 6098 . . . . . 6  |-  ( A  =  0  ->  (
( A  x.  B
)  ^ c  C
)  =  ( ( 0  x.  B )  ^ c  C ) )
29 oveq1 6090 . . . . . . 7  |-  ( A  =  0  ->  ( A  ^ c  C )  =  ( 0  ^ c  C ) )
3029oveq1d 6098 . . . . . 6  |-  ( A  =  0  ->  (
( A  ^ c  C )  x.  ( B  ^ c  C ) )  =  ( ( 0  ^ c  C
)  x.  ( B  ^ c  C ) ) )
3128, 30eqeq12d 2452 . . . . 5  |-  ( A  =  0  ->  (
( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) )  <->  ( ( 0  x.  B )  ^ c  C )  =  ( ( 0  ^ c  C )  x.  ( B  ^ c  C ) ) ) )
3226, 31syl5ibrcom 215 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( A  =  0  ->  ( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) ) ) )
3332a1dd 45 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( A  =  0  ->  ( B  =/=  0  ->  ( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) ) ) ) )
341adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  A  e.  RR )
35 simpl1r 1010 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
0  <_  A )
36 simprl 734 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  A  =/=  0 )
3734, 35, 36ne0gt0d 9212 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
0  <  A )
3834, 37elrpd 10648 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  A  e.  RR+ )
3914adantr 453 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  B  e.  RR )
40 simpl2r 1012 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
0  <_  B )
41 simprr 735 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  B  =/=  0 )
4239, 40, 41ne0gt0d 9212 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
0  <  B )
4339, 42elrpd 10648 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  B  e.  RR+ )
4438, 43relogmuld 20522 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( log `  ( A  x.  B )
)  =  ( ( log `  A )  +  ( log `  B
) ) )
4544oveq2d 6099 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( C  x.  ( log `  ( A  x.  B ) ) )  =  ( C  x.  ( ( log `  A
)  +  ( log `  B ) ) ) )
465adantr 453 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  C  e.  CC )
472adantr 453 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  A  e.  CC )
4847, 36logcld 20470 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( log `  A
)  e.  CC )
4915adantr 453 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  ->  B  e.  CC )
5049, 41logcld 20470 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( log `  B
)  e.  CC )
5146, 48, 50adddid 9114 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( C  x.  (
( log `  A
)  +  ( log `  B ) ) )  =  ( ( C  x.  ( log `  A
) )  +  ( C  x.  ( log `  B ) ) ) )
5245, 51eqtrd 2470 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( C  x.  ( log `  ( A  x.  B ) ) )  =  ( ( C  x.  ( log `  A
) )  +  ( C  x.  ( log `  B ) ) ) )
5352fveq2d 5734 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( exp `  ( C  x.  ( log `  ( A  x.  B
) ) ) )  =  ( exp `  (
( C  x.  ( log `  A ) )  +  ( C  x.  ( log `  B ) ) ) ) )
5446, 48mulcld 9110 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( C  x.  ( log `  A ) )  e.  CC )
5546, 50mulcld 9110 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( C  x.  ( log `  B ) )  e.  CC )
56 efadd 12698 . . . . . . 7  |-  ( ( ( C  x.  ( log `  A ) )  e.  CC  /\  ( C  x.  ( log `  B ) )  e.  CC )  ->  ( exp `  ( ( C  x.  ( log `  A
) )  +  ( C  x.  ( log `  B ) ) ) )  =  ( ( exp `  ( C  x.  ( log `  A
) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
5754, 55, 56syl2anc 644 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( exp `  (
( C  x.  ( log `  A ) )  +  ( C  x.  ( log `  B ) ) ) )  =  ( ( exp `  ( C  x.  ( log `  A ) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
5853, 57eqtrd 2470 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( exp `  ( C  x.  ( log `  ( A  x.  B
) ) ) )  =  ( ( exp `  ( C  x.  ( log `  A ) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
5947, 49mulcld 9110 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  e.  CC )
6047, 49, 36, 41mulne0d 9676 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( A  x.  B
)  =/=  0 )
61 cxpef 20558 . . . . . 6  |-  ( ( ( A  x.  B
)  e.  CC  /\  ( A  x.  B
)  =/=  0  /\  C  e.  CC )  ->  ( ( A  x.  B )  ^ c  C )  =  ( exp `  ( C  x.  ( log `  ( A  x.  B )
) ) ) )
6259, 60, 46, 61syl3anc 1185 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( ( A  x.  B )  ^ c  C )  =  ( exp `  ( C  x.  ( log `  ( A  x.  B )
) ) ) )
63 cxpef 20558 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0  /\  C  e.  CC )  ->  ( A  ^ c  C )  =  ( exp `  ( C  x.  ( log `  A ) ) ) )
6447, 36, 46, 63syl3anc 1185 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( A  ^ c  C )  =  ( exp `  ( C  x.  ( log `  A
) ) ) )
65 cxpef 20558 . . . . . . 7  |-  ( ( B  e.  CC  /\  B  =/=  0  /\  C  e.  CC )  ->  ( B  ^ c  C )  =  ( exp `  ( C  x.  ( log `  B ) ) ) )
6649, 41, 46, 65syl3anc 1185 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( B  ^ c  C )  =  ( exp `  ( C  x.  ( log `  B
) ) ) )
6764, 66oveq12d 6101 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( ( A  ^ c  C )  x.  ( B  ^ c  C ) )  =  ( ( exp `  ( C  x.  ( log `  A
) ) )  x.  ( exp `  ( C  x.  ( log `  B ) ) ) ) )
6858, 62, 673eqtr4d 2480 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  -> 
( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) ) )
6968exp32 590 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( A  =/=  0  ->  ( B  =/=  0  ->  ( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) ) ) ) )
7033, 69pm2.61dne 2683 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( B  =/=  0  ->  ( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) ) ) )
7113, 70pm2.61dne 2683 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  CC )  ->  ( ( A  x.  B )  ^ c  C )  =  ( ( A  ^ c  C )  x.  ( B  ^ c  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   CCcc 8990   RRcr 8991   0cc0 8992    + caddc 8995    x. cmul 8997    <_ cle 9123   expce 12666   logclog 20454    ^ c ccxp 20455
This theorem is referenced by:  cxprec  20579  divcxp  20580  mulcxpd  20621
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-map 7022  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-oi 7481  df-card 7828  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ioo 10922  df-ioc 10923  df-ico 10924  df-icc 10925  df-fz 11046  df-fzo 11138  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-fac 11569  df-bc 11596  df-hash 11621  df-shft 11884  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-limsup 12267  df-clim 12284  df-rlim 12285  df-sum 12482  df-ef 12672  df-sin 12674  df-cos 12675  df-pi 12677  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-xrs 13728  df-0g 13729  df-gsum 13730  df-qtop 13735  df-imas 13736  df-xps 13738  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-submnd 14741  df-mulg 14817  df-cntz 15118  df-cmn 15416  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-fbas 16701  df-fg 16702  df-cnfld 16706  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cld 17085  df-ntr 17086  df-cls 17087  df-nei 17164  df-lp 17202  df-perf 17203  df-cn 17293  df-cnp 17294  df-haus 17381  df-tx 17596  df-hmeo 17789  df-fil 17880  df-fm 17972  df-flim 17973  df-flf 17974  df-xms 18352  df-ms 18353  df-tms 18354  df-cncf 18910  df-limc 19755  df-dv 19756  df-log 20456  df-cxp 20457
  Copyright terms: Public domain W3C validator