MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgass Unicode version

Theorem mulgass 14807
Description: Product of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgass.b  |-  B  =  ( Base `  G
)
mulgass.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgass  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )

Proof of Theorem mulgass
StepHypRef Expression
1 simpr1 962 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  ZZ )
2 elznn0 10189 . . . 4  |-  ( M  e.  ZZ  <->  ( M  e.  RR  /\  ( M  e.  NN0  \/  -u M  e.  NN0 ) ) )
32simprbi 450 . . 3  |-  ( M  e.  ZZ  ->  ( M  e.  NN0  \/  -u M  e.  NN0 ) )
41, 3syl 15 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  e.  NN0  \/  -u M  e.  NN0 ) )
5 simpr2 963 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  ZZ )
6 elznn0 10189 . . . 4  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
76simprbi 450 . . 3  |-  ( N  e.  ZZ  ->  ( N  e.  NN0  \/  -u N  e.  NN0 ) )
85, 7syl 15 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( N  e.  NN0  \/  -u N  e.  NN0 ) )
9 grpmnd 14704 . . . . . 6  |-  ( G  e.  Grp  ->  G  e.  Mnd )
109ad2antrr 706 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  ->  G  e.  Mnd )
11 simprl 732 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  ->  M  e.  NN0 )
12 simprr 733 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  ->  N  e.  NN0 )
13 simplr3 1000 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  ->  X  e.  B )
14 mulgass.b . . . . . 6  |-  B  =  ( Base `  G
)
15 mulgass.t . . . . . 6  |-  .x.  =  (.g
`  G )
1614, 15mulgnn0ass 14806 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )
1710, 11, 12, 13, 16syl13anc 1185 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
1817ex 423 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
191zcnd 10269 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  CC )
205zcnd 10269 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  CC )
2119, 20mulneg1d 9379 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u M  x.  N )  =  -u ( M  x.  N
) )
2221adantr 451 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( -u M  x.  N
)  =  -u ( M  x.  N )
)
2322oveq1d 5996 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( -u M  x.  N )  .x.  X
)  =  ( -u ( M  x.  N
)  .x.  X )
)
249ad2antrr 706 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  ->  G  e.  Mnd )
25 simprl 732 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  ->  -u M  e.  NN0 )
26 simprr 733 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  ->  N  e.  NN0 )
27 simpr3 964 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  X  e.  B )
2827adantr 451 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  ->  X  e.  B )
2914, 15mulgnn0ass 14806 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( -u M  e.  NN0  /\  N  e.  NN0  /\  X  e.  B )
)  ->  ( ( -u M  x.  N ) 
.x.  X )  =  ( -u M  .x.  ( N  .x.  X ) ) )
3024, 25, 26, 28, 29syl13anc 1185 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( -u M  x.  N )  .x.  X
)  =  ( -u M  .x.  ( N  .x.  X ) ) )
3123, 30eqtr3d 2400 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( -u ( M  x.  N )  .x.  X
)  =  ( -u M  .x.  ( N  .x.  X ) ) )
32 fveq2 5632 . . . . . . 7  |-  ( (
-u ( M  x.  N )  .x.  X
)  =  ( -u M  .x.  ( N  .x.  X ) )  -> 
( ( inv g `  G ) `  ( -u ( M  x.  N
)  .x.  X )
)  =  ( ( inv g `  G
) `  ( -u M  .x.  ( N  .x.  X
) ) ) )
33 simpl 443 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  G  e.  Grp )
341, 5zmulcld 10274 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  x.  N )  e.  ZZ )
35 eqid 2366 . . . . . . . . . . . 12  |-  ( inv g `  G )  =  ( inv g `  G )
3614, 15, 35mulgneg 14795 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  x.  N
)  e.  ZZ  /\  X  e.  B )  ->  ( -u ( M  x.  N )  .x.  X )  =  ( ( inv g `  G ) `  (
( M  x.  N
)  .x.  X )
) )
3733, 34, 27, 36syl3anc 1183 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u ( M  x.  N )  .x.  X )  =  ( ( inv g `  G ) `  (
( M  x.  N
)  .x.  X )
) )
3837fveq2d 5636 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( inv g `  G ) `
 ( -u ( M  x.  N )  .x.  X ) )  =  ( ( inv g `  G ) `  (
( inv g `  G ) `  (
( M  x.  N
)  .x.  X )
) ) )
3914, 15mulgcl 14794 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  x.  N
)  e.  ZZ  /\  X  e.  B )  ->  ( ( M  x.  N )  .x.  X
)  e.  B )
4033, 34, 27, 39syl3anc 1183 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  e.  B
)
4114, 35grpinvinv 14745 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( ( M  x.  N )  .x.  X
)  e.  B )  ->  ( ( inv g `  G ) `
 ( ( inv g `  G ) `
 ( ( M  x.  N )  .x.  X ) ) )  =  ( ( M  x.  N )  .x.  X ) )
4240, 41syldan 456 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( inv g `  G ) `
 ( ( inv g `  G ) `
 ( ( M  x.  N )  .x.  X ) ) )  =  ( ( M  x.  N )  .x.  X ) )
4338, 42eqtrd 2398 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( inv g `  G ) `
 ( -u ( M  x.  N )  .x.  X ) )  =  ( ( M  x.  N )  .x.  X
) )
4414, 15mulgcl 14794 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
4533, 5, 27, 44syl3anc 1183 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( N  .x.  X )  e.  B
)
4614, 15, 35mulgneg 14795 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  ( N  .x.  X )  e.  B )  ->  ( -u M  .x.  ( N 
.x.  X ) )  =  ( ( inv g `  G ) `
 ( M  .x.  ( N  .x.  X ) ) ) )
4733, 1, 45, 46syl3anc 1183 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u M  .x.  ( N  .x.  X
) )  =  ( ( inv g `  G ) `  ( M  .x.  ( N  .x.  X ) ) ) )
4847fveq2d 5636 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( inv g `  G ) `
 ( -u M  .x.  ( N  .x.  X
) ) )  =  ( ( inv g `  G ) `  (
( inv g `  G ) `  ( M  .x.  ( N  .x.  X ) ) ) ) )
4914, 15mulgcl 14794 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  ( N  .x.  X )  e.  B )  ->  ( M  .x.  ( N  .x.  X ) )  e.  B )
5033, 1, 45, 49syl3anc 1183 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  .x.  ( N  .x.  X
) )  e.  B
)
5114, 35grpinvinv 14745 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  .x.  ( N 
.x.  X ) )  e.  B )  -> 
( ( inv g `  G ) `  (
( inv g `  G ) `  ( M  .x.  ( N  .x.  X ) ) ) )  =  ( M 
.x.  ( N  .x.  X ) ) )
5250, 51syldan 456 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( inv g `  G ) `
 ( ( inv g `  G ) `
 ( M  .x.  ( N  .x.  X ) ) ) )  =  ( M  .x.  ( N  .x.  X ) ) )
5348, 52eqtrd 2398 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( inv g `  G ) `
 ( -u M  .x.  ( N  .x.  X
) ) )  =  ( M  .x.  ( N  .x.  X ) ) )
5443, 53eqeq12d 2380 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( (
( inv g `  G ) `  ( -u ( M  x.  N
)  .x.  X )
)  =  ( ( inv g `  G
) `  ( -u M  .x.  ( N  .x.  X
) ) )  <->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) ) )
5532, 54syl5ib 210 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( -u ( M  x.  N
)  .x.  X )  =  ( -u M  .x.  ( N  .x.  X
) )  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
5655imp 418 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u ( M  x.  N )  .x.  X )  =  (
-u M  .x.  ( N  .x.  X ) ) )  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )
5731, 56syldan 456 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  N  e. 
NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
5857ex 423 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( -u M  e.  NN0  /\  N  e.  NN0 )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) )
599ad2antrr 706 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  G  e.  Mnd )
60 simprl 732 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  M  e.  NN0 )
61 simprr 733 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u N  e.  NN0 )
6227adantr 451 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  X  e.  B )
6314, 15mulgnn0ass 14806 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN0  /\  -u N  e.  NN0  /\  X  e.  B ) )  ->  ( ( M  x.  -u N ) 
.x.  X )  =  ( M  .x.  ( -u N  .x.  X ) ) )
6459, 60, 61, 62, 63syl13anc 1185 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( M  x.  -u N )  .x.  X
)  =  ( M 
.x.  ( -u N  .x.  X ) ) )
6519, 20mulneg2d 9380 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  x.  -u N )  = 
-u ( M  x.  N ) )
6665adantr 451 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( M  x.  -u N
)  =  -u ( M  x.  N )
)
6766oveq1d 5996 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( M  x.  -u N )  .x.  X
)  =  ( -u ( M  x.  N
)  .x.  X )
)
6814, 15, 35mulgneg 14795 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( ( inv g `  G ) `
 ( N  .x.  X ) ) )
6933, 5, 27, 68syl3anc 1183 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u N  .x.  X )  =  ( ( inv g `  G ) `  ( N  .x.  X ) ) )
7069oveq2d 5997 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  .x.  ( -u N  .x.  X ) )  =  ( M  .x.  (
( inv g `  G ) `  ( N  .x.  X ) ) ) )
7114, 15, 35mulgneg2 14804 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  ( N  .x.  X )  e.  B )  ->  ( -u M  .x.  ( N 
.x.  X ) )  =  ( M  .x.  ( ( inv g `  G ) `  ( N  .x.  X ) ) ) )
7233, 1, 45, 71syl3anc 1183 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u M  .x.  ( N  .x.  X
) )  =  ( M  .x.  ( ( inv g `  G
) `  ( N  .x.  X ) ) ) )
7370, 72eqtr4d 2401 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  .x.  ( -u N  .x.  X ) )  =  ( -u M  .x.  ( N  .x.  X ) ) )
7473adantr 451 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( M  .x.  ( -u N  .x.  X ) )  =  ( -u M  .x.  ( N  .x.  X ) ) )
7564, 67, 743eqtr3d 2406 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u ( M  x.  N )  .x.  X
)  =  ( -u M  .x.  ( N  .x.  X ) ) )
7675, 56syldan 456 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
7776ex 423 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  e.  NN0  /\  -u N  e.  NN0 )  ->  (
( M  x.  N
)  .x.  X )  =  ( M  .x.  ( N  .x.  X ) ) ) )
789ad2antrr 706 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  G  e.  Mnd )
79 simprl 732 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u M  e.  NN0 )
80 simprr 733 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u N  e.  NN0 )
8127adantr 451 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  X  e.  B )
8214, 15mulgnn0ass 14806 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0  /\  X  e.  B ) )  ->  ( ( -u M  x.  -u N
)  .x.  X )  =  ( -u M  .x.  ( -u N  .x.  X ) ) )
8378, 79, 80, 81, 82syl13anc 1185 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( -u M  x.  -u N )  .x.  X )  =  (
-u M  .x.  ( -u N  .x.  X ) ) )
8419, 20mul2negd 9381 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( -u M  x.  -u N )  =  ( M  x.  N
) )
8584oveq1d 5996 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( -u M  x.  -u N
)  .x.  X )  =  ( ( M  x.  N )  .x.  X ) )
8685adantr 451 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( -u M  x.  -u N )  .x.  X )  =  ( ( M  x.  N
)  .x.  X )
)
8733adantr 451 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  G  e.  Grp )
881adantr 451 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  M  e.  ZZ )
89 nn0z 10197 . . . . . . . . 9  |-  ( -u N  e.  NN0  ->  -u N  e.  ZZ )
9089ad2antll 709 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u N  e.  ZZ )
9114, 15mulgcl 14794 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  e.  B
)
9287, 90, 81, 91syl3anc 1183 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u N  .x.  X
)  e.  B )
9314, 15, 35mulgneg2 14804 . . . . . . 7  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  ( -u N  .x.  X )  e.  B )  -> 
( -u M  .x.  ( -u N  .x.  X ) )  =  ( M 
.x.  ( ( inv g `  G ) `
 ( -u N  .x.  X ) ) ) )
9487, 88, 92, 93syl3anc 1183 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u M  .x.  ( -u N  .x.  X ) )  =  ( M 
.x.  ( ( inv g `  G ) `
 ( -u N  .x.  X ) ) ) )
9514, 15, 35mulgneg 14795 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  X  e.  B )  ->  ( -u -u N  .x.  X )  =  ( ( inv g `  G ) `  ( -u N  .x.  X ) ) )
9687, 90, 81, 95syl3anc 1183 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u -u N  .x.  X
)  =  ( ( inv g `  G
) `  ( -u N  .x.  X ) ) )
9720negnegd 9295 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  -u -u N  =  N )
9897adantr 451 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  ->  -u -u N  =  N
)
9998oveq1d 5996 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u -u N  .x.  X
)  =  ( N 
.x.  X ) )
10096, 99eqtr3d 2400 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( inv g `  G ) `  ( -u N  .x.  X ) )  =  ( N 
.x.  X ) )
101100oveq2d 5997 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( M  .x.  (
( inv g `  G ) `  ( -u N  .x.  X ) ) )  =  ( M  .x.  ( N 
.x.  X ) ) )
10294, 101eqtrd 2398 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( -u M  .x.  ( -u N  .x.  X ) )  =  ( M 
.x.  ( N  .x.  X ) ) )
10383, 86, 1023eqtr3d 2406 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( -u M  e.  NN0  /\  -u N  e.  NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) )
104103ex 423 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( -u M  e.  NN0  /\  -u N  e.  NN0 )  ->  ( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) )
10518, 58, 77, 104ccased 913 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( (
( M  e.  NN0  \/  -u M  e.  NN0 )  /\  ( N  e. 
NN0  \/  -u N  e. 
NN0 ) )  -> 
( ( M  x.  N )  .x.  X
)  =  ( M 
.x.  ( N  .x.  X ) ) ) )
1064, 8, 105mp2and 660 1  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  x.  N )  .x.  X )  =  ( M  .x.  ( N 
.x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   ` cfv 5358  (class class class)co 5981   RRcr 8883    x. cmul 8889   -ucneg 9185   NN0cn0 10114   ZZcz 10175   Basecbs 13356   Mndcmnd 14571   Grpcgrp 14572   inv gcminusg 14573  .gcmg 14576
This theorem is referenced by:  odmod  15071  odmulgid  15077  odbezout  15081  gexdvdsi  15104  pgpfac1lem2  15520  pgpfac1lem3a  15521  pgpfac1lem3  15522  mulgrhm  16677  zlmlmod  16694
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-er 6802  df-en 7007  df-dom 7008  df-sdom 7009  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-n0 10115  df-z 10176  df-uz 10382  df-fz 10936  df-seq 11211  df-0g 13614  df-mnd 14577  df-grp 14699  df-minusg 14700  df-mulg 14702
  Copyright terms: Public domain W3C validator