MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgass2 Unicode version

Theorem mulgass2 15403
Description: An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgass2.b  |-  B  =  ( Base `  R
)
mulgass2.m  |-  .x.  =  (.g
`  R )
mulgass2.t  |-  .X.  =  ( .r `  R )
Assertion
Ref Expression
mulgass2  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) )

Proof of Theorem mulgass2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5881 . . . . . . 7  |-  ( x  =  0  ->  (
x  .x.  X )  =  ( 0  .x. 
X ) )
21oveq1d 5889 . . . . . 6  |-  ( x  =  0  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( 0 
.x.  X )  .X.  Y ) )
3 oveq1 5881 . . . . . 6  |-  ( x  =  0  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( 0  .x.  ( X  .X.  Y ) ) )
42, 3eqeq12d 2310 . . . . 5  |-  ( x  =  0  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
0  .x.  X )  .X.  Y )  =  ( 0  .x.  ( X 
.X.  Y ) ) ) )
5 oveq1 5881 . . . . . . 7  |-  ( x  =  y  ->  (
x  .x.  X )  =  ( y  .x.  X ) )
65oveq1d 5889 . . . . . 6  |-  ( x  =  y  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( y 
.x.  X )  .X.  Y ) )
7 oveq1 5881 . . . . . 6  |-  ( x  =  y  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( y  .x.  ( X  .X.  Y ) ) )
86, 7eqeq12d 2310 . . . . 5  |-  ( x  =  y  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
y  .x.  X )  .X.  Y )  =  ( y  .x.  ( X 
.X.  Y ) ) ) )
9 oveq1 5881 . . . . . . 7  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  X )  =  ( ( y  +  1 )  .x.  X ) )
109oveq1d 5889 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y ) )
11 oveq1 5881 . . . . . 6  |-  ( x  =  ( y  +  1 )  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) )
1210, 11eqeq12d 2310 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( (
( y  +  1 )  .x.  X ) 
.X.  Y )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) ) ) )
13 oveq1 5881 . . . . . . 7  |-  ( x  =  -u y  ->  (
x  .x.  X )  =  ( -u y  .x.  X ) )
1413oveq1d 5889 . . . . . 6  |-  ( x  =  -u y  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( -u y  .x.  X )  .X.  Y ) )
15 oveq1 5881 . . . . . 6  |-  ( x  =  -u y  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( -u y  .x.  ( X  .X.  Y ) ) )
1614, 15eqeq12d 2310 . . . . 5  |-  ( x  =  -u y  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( ( -u y  .x.  X ) 
.X.  Y )  =  ( -u y  .x.  ( X  .X.  Y ) ) ) )
17 oveq1 5881 . . . . . . 7  |-  ( x  =  N  ->  (
x  .x.  X )  =  ( N  .x.  X ) )
1817oveq1d 5889 . . . . . 6  |-  ( x  =  N  ->  (
( x  .x.  X
)  .X.  Y )  =  ( ( N 
.x.  X )  .X.  Y ) )
19 oveq1 5881 . . . . . 6  |-  ( x  =  N  ->  (
x  .x.  ( X  .X.  Y ) )  =  ( N  .x.  ( X  .X.  Y ) ) )
2018, 19eqeq12d 2310 . . . . 5  |-  ( x  =  N  ->  (
( ( x  .x.  X )  .X.  Y
)  =  ( x 
.x.  ( X  .X.  Y ) )  <->  ( ( N  .x.  X )  .X.  Y )  =  ( N  .x.  ( X 
.X.  Y ) ) ) )
21 mulgass2.b . . . . . . . 8  |-  B  =  ( Base `  R
)
22 mulgass2.t . . . . . . . 8  |-  .X.  =  ( .r `  R )
23 eqid 2296 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
2421, 22, 23rnglz 15393 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  B )  ->  (
( 0g `  R
)  .X.  Y )  =  ( 0g `  R ) )
25243adant3 975 . . . . . 6  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
( 0g `  R
)  .X.  Y )  =  ( 0g `  R ) )
26 simp3 957 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  X  e.  B )
27 mulgass2.m . . . . . . . . 9  |-  .x.  =  (.g
`  R )
2821, 23, 27mulg0 14588 . . . . . . . 8  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  R ) )
2926, 28syl 15 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
0  .x.  X )  =  ( 0g `  R ) )
3029oveq1d 5889 . . . . . 6  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
( 0  .x.  X
)  .X.  Y )  =  ( ( 0g
`  R )  .X.  Y ) )
3121, 22rngcl 15370 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .X.  Y )  e.  B )
32313com23 1157 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  ( X  .X.  Y )  e.  B )
3321, 23, 27mulg0 14588 . . . . . . 7  |-  ( ( X  .X.  Y )  e.  B  ->  ( 0 
.x.  ( X  .X.  Y ) )  =  ( 0g `  R
) )
3432, 33syl 15 . . . . . 6  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
0  .x.  ( X  .X.  Y ) )  =  ( 0g `  R
) )
3525, 30, 343eqtr4d 2338 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
( 0  .x.  X
)  .X.  Y )  =  ( 0  .x.  ( X  .X.  Y
) ) )
36 oveq1 5881 . . . . . . 7  |-  ( ( ( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( (
( y  .x.  X
)  .X.  Y )
( +g  `  R ) ( X  .X.  Y
) )  =  ( ( y  .x.  ( X  .X.  Y ) ) ( +g  `  R
) ( X  .X.  Y ) ) )
37 simpl1 958 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  R  e.  Ring )
38 rnggrp 15362 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  R  e. 
Grp )
3937, 38syl 15 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  R  e.  Grp )
40 nn0z 10062 . . . . . . . . . . . 12  |-  ( y  e.  NN0  ->  y  e.  ZZ )
4140adantl 452 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  y  e.  ZZ )
4226adantr 451 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  X  e.  B
)
43 eqid 2296 . . . . . . . . . . . 12  |-  ( +g  `  R )  =  ( +g  `  R )
4421, 27, 43mulgp1 14609 . . . . . . . . . . 11  |-  ( ( R  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
( y  +  1 )  .x.  X )  =  ( ( y 
.x.  X ) ( +g  `  R ) X ) )
4539, 41, 42, 44syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( y  +  1 )  .x.  X )  =  ( ( y  .x.  X
) ( +g  `  R
) X ) )
4645oveq1d 5889 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y )  =  ( ( ( y  .x.  X ) ( +g  `  R ) X ) 
.X.  Y ) )
47383ad2ant1 976 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  R  e.  Grp )
4847adantr 451 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  R  e.  Grp )
4921, 27mulgcl 14600 . . . . . . . . . . 11  |-  ( ( R  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  (
y  .x.  X )  e.  B )
5048, 41, 42, 49syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( y  .x.  X )  e.  B
)
51 simpl2 959 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  Y  e.  B
)
5221, 43, 22rngdir 15376 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
( y  .x.  X
)  e.  B  /\  X  e.  B  /\  Y  e.  B )
)  ->  ( (
( y  .x.  X
) ( +g  `  R
) X )  .X.  Y )  =  ( ( ( y  .x.  X )  .X.  Y
) ( +g  `  R
) ( X  .X.  Y ) ) )
5337, 50, 42, 51, 52syl13anc 1184 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( ( y  .x.  X ) ( +g  `  R
) X )  .X.  Y )  =  ( ( ( y  .x.  X )  .X.  Y
) ( +g  `  R
) ( X  .X.  Y ) ) )
5446, 53eqtrd 2328 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y )  =  ( ( ( y  .x.  X )  .X.  Y
) ( +g  `  R
) ( X  .X.  Y ) ) )
5532adantr 451 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( X  .X.  Y )  e.  B
)
5621, 27, 43mulgp1 14609 . . . . . . . . 9  |-  ( ( R  e.  Grp  /\  y  e.  ZZ  /\  ( X  .X.  Y )  e.  B )  ->  (
( y  +  1 )  .x.  ( X 
.X.  Y ) )  =  ( ( y 
.x.  ( X  .X.  Y ) ) ( +g  `  R ) ( X  .X.  Y
) ) )
5739, 41, 55, 56syl3anc 1182 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( y  +  1 )  .x.  ( X  .X.  Y ) )  =  ( ( y  .x.  ( X 
.X.  Y ) ) ( +g  `  R
) ( X  .X.  Y ) ) )
5854, 57eqeq12d 2310 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( ( ( y  +  1 )  .x.  X ) 
.X.  Y )  =  ( ( y  +  1 )  .x.  ( X  .X.  Y ) )  <-> 
( ( ( y 
.x.  X )  .X.  Y ) ( +g  `  R ) ( X 
.X.  Y ) )  =  ( ( y 
.x.  ( X  .X.  Y ) ) ( +g  `  R ) ( X  .X.  Y
) ) ) )
5936, 58syl5ibr 212 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN0 )  ->  ( ( ( y  .x.  X ) 
.X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( ( ( y  +  1 ) 
.x.  X )  .X.  Y )  =  ( ( y  +  1 )  .x.  ( X 
.X.  Y ) ) ) )
6059ex 423 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
y  e.  NN0  ->  ( ( ( y  .x.  X )  .X.  Y
)  =  ( y 
.x.  ( X  .X.  Y ) )  -> 
( ( ( y  +  1 )  .x.  X )  .X.  Y
)  =  ( ( y  +  1 ) 
.x.  ( X  .X.  Y ) ) ) ) )
61 fveq2 5541 . . . . . . 7  |-  ( ( ( y  .x.  X
)  .X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( ( inv g `  R ) `
 ( ( y 
.x.  X )  .X.  Y ) )  =  ( ( inv g `  R ) `  (
y  .x.  ( X  .X.  Y ) ) ) )
6247adantr 451 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  R  e.  Grp )
63 nnz 10061 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  y  e.  ZZ )
6463adantl 452 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  y  e.  ZZ )
6526adantr 451 . . . . . . . . . . 11  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  X  e.  B
)
66 eqid 2296 . . . . . . . . . . . 12  |-  ( inv g `  R )  =  ( inv g `  R )
6721, 27, 66mulgneg 14601 . . . . . . . . . . 11  |-  ( ( R  e.  Grp  /\  y  e.  ZZ  /\  X  e.  B )  ->  ( -u y  .x.  X )  =  ( ( inv g `  R ) `
 ( y  .x.  X ) ) )
6862, 64, 65, 67syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( -u y  .x.  X )  =  ( ( inv g `  R ) `  (
y  .x.  X )
) )
6968oveq1d 5889 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( ( -u y  .x.  X )  .X.  Y )  =  ( ( ( inv g `  R ) `  (
y  .x.  X )
)  .X.  Y )
)
70 simpl1 958 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  R  e.  Ring )
7162, 64, 65, 49syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( y  .x.  X )  e.  B
)
72 simpl2 959 . . . . . . . . . 10  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  Y  e.  B
)
7321, 22, 66, 70, 71, 72rngmneg1 15398 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( ( ( inv g `  R
) `  ( y  .x.  X ) )  .X.  Y )  =  ( ( inv g `  R ) `  (
( y  .x.  X
)  .X.  Y )
) )
7469, 73eqtrd 2328 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( ( -u y  .x.  X )  .X.  Y )  =  ( ( inv g `  R ) `  (
( y  .x.  X
)  .X.  Y )
) )
7532adantr 451 . . . . . . . . 9  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( X  .X.  Y )  e.  B
)
7621, 27, 66mulgneg 14601 . . . . . . . . 9  |-  ( ( R  e.  Grp  /\  y  e.  ZZ  /\  ( X  .X.  Y )  e.  B )  ->  ( -u y  .x.  ( X 
.X.  Y ) )  =  ( ( inv g `  R ) `
 ( y  .x.  ( X  .X.  Y ) ) ) )
7762, 64, 75, 76syl3anc 1182 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( -u y  .x.  ( X  .X.  Y
) )  =  ( ( inv g `  R ) `  (
y  .x.  ( X  .X.  Y ) ) ) )
7874, 77eqeq12d 2310 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( ( (
-u y  .x.  X
)  .X.  Y )  =  ( -u y  .x.  ( X  .X.  Y
) )  <->  ( ( inv g `  R ) `
 ( ( y 
.x.  X )  .X.  Y ) )  =  ( ( inv g `  R ) `  (
y  .x.  ( X  .X.  Y ) ) ) ) )
7961, 78syl5ibr 212 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  /\  y  e.  NN )  ->  ( ( ( y  .x.  X ) 
.X.  Y )  =  ( y  .x.  ( X  .X.  Y ) )  ->  ( ( -u y  .x.  X )  .X.  Y )  =  (
-u y  .x.  ( X  .X.  Y ) ) ) )
8079ex 423 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  (
y  e.  NN  ->  ( ( ( y  .x.  X )  .X.  Y
)  =  ( y 
.x.  ( X  .X.  Y ) )  -> 
( ( -u y  .x.  X )  .X.  Y
)  =  ( -u y  .x.  ( X  .X.  Y ) ) ) ) )
814, 8, 12, 16, 20, 35, 60, 80zindd 10129 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  B  /\  X  e.  B )  ->  ( N  e.  ZZ  ->  ( ( N  .x.  X
)  .X.  Y )  =  ( N  .x.  ( X  .X.  Y ) ) ) )
82813exp 1150 . . 3  |-  ( R  e.  Ring  ->  ( Y  e.  B  ->  ( X  e.  B  ->  ( N  e.  ZZ  ->  ( ( N  .x.  X
)  .X.  Y )  =  ( N  .x.  ( X  .X.  Y ) ) ) ) ) )
8382com24 81 . 2  |-  ( R  e.  Ring  ->  ( N  e.  ZZ  ->  ( X  e.  B  ->  ( Y  e.  B  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) ) ) ) )
84833imp2 1166 1  |-  ( ( R  e.  Ring  /\  ( N  e.  ZZ  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( ( N  .x.  X )  .X.  Y
)  =  ( N 
.x.  ( X  .X.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   0cc0 8753   1c1 8754    + caddc 8756   -ucneg 9054   NNcn 9762   NN0cn0 9981   ZZcz 10040   Basecbs 13164   +g cplusg 13224   .rcmulr 13225   0gc0g 13416   Grpcgrp 14378   inv gcminusg 14379  .gcmg 14382   Ringcrg 15353
This theorem is referenced by:  mulgass3  15435  mulgrhm  16476  zlmassa  16494
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-seq 11063  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-plusg 13237  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506  df-mulg 14508  df-mgp 15342  df-rng 15356  df-ur 15358
  Copyright terms: Public domain W3C validator