MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgdir Structured version   Unicode version

Theorem mulgdir 14907
Description: Sum of group multiples, generalized to  ZZ. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgdir  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )

Proof of Theorem mulgdir
StepHypRef Expression
1 mulgnndir.b . . . 4  |-  B  =  ( Base `  G
)
2 mulgnndir.t . . . 4  |-  .x.  =  (.g
`  G )
3 mulgnndir.p . . . 4  |-  .+  =  ( +g  `  G )
41, 2, 3mulgdirlem 14906 . . 3  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( M  +  N
)  e.  NN0 )  ->  ( ( M  +  N )  .x.  X
)  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
543expa 1153 . 2  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  ( M  +  N )  e.  NN0 )  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
6 simpll 731 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  G  e.  Grp )
7 simpr2 964 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  N  e.  ZZ )
87adantr 452 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  N  e.  ZZ )
98znegcld 10369 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u N  e.  ZZ )
10 simpr1 963 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  M  e.  ZZ )
1110adantr 452 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  M  e.  ZZ )
1211znegcld 10369 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u M  e.  ZZ )
13 simplr3 1001 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  X  e.  B )
1411zcnd 10368 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  M  e.  CC )
158zcnd 10368 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  N  e.  CC )
1614, 15negdid 9416 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u ( M  +  N )  =  ( -u M  +  -u N ) )
1714negcld 9390 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u M  e.  CC )
1815negcld 9390 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u N  e.  CC )
1917, 18addcomd 9260 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u M  +  -u N
)  =  ( -u N  +  -u M ) )
2016, 19eqtrd 2467 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u ( M  +  N )  =  ( -u N  +  -u M ) )
21 simpr 448 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  -u ( M  +  N )  e.  NN0 )
2220, 21eqeltrrd 2510 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u N  +  -u M
)  e.  NN0 )
231, 2, 3mulgdirlem 14906 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( -u N  e.  ZZ  /\  -u M  e.  ZZ  /\  X  e.  B )  /\  ( -u N  +  -u M )  e. 
NN0 )  ->  (
( -u N  +  -u M )  .x.  X
)  =  ( (
-u N  .x.  X
)  .+  ( -u M  .x.  X ) ) )
246, 9, 12, 13, 22, 23syl131anc 1197 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  +  -u M )  .x.  X
)  =  ( (
-u N  .x.  X
)  .+  ( -u M  .x.  X ) ) )
2520oveq1d 6088 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u ( M  +  N
)  .x.  X )  =  ( ( -u N  +  -u M ) 
.x.  X ) )
2610, 7zaddcld 10371 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( M  +  N )  e.  ZZ )
2726adantr 452 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( M  +  N )  e.  ZZ )
28 eqid 2435 . . . . . . . 8  |-  ( inv g `  G )  =  ( inv g `  G )
291, 2, 28mulgneg 14900 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  +  N
)  e.  ZZ  /\  X  e.  B )  ->  ( -u ( M  +  N )  .x.  X )  =  ( ( inv g `  G ) `  (
( M  +  N
)  .x.  X )
) )
306, 27, 13, 29syl3anc 1184 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u ( M  +  N
)  .x.  X )  =  ( ( inv g `  G ) `
 ( ( M  +  N )  .x.  X ) ) )
3125, 30eqtr3d 2469 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  +  -u M )  .x.  X
)  =  ( ( inv g `  G
) `  ( ( M  +  N )  .x.  X ) ) )
321, 2, 28mulgneg 14900 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  =  ( ( inv g `  G ) `
 ( N  .x.  X ) ) )
336, 8, 13, 32syl3anc 1184 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u N  .x.  X )  =  ( ( inv g `  G ) `
 ( N  .x.  X ) ) )
341, 2, 28mulgneg 14900 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  X  e.  B )  ->  ( -u M  .x.  X )  =  ( ( inv g `  G ) `
 ( M  .x.  X ) ) )
356, 11, 13, 34syl3anc 1184 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( -u M  .x.  X )  =  ( ( inv g `  G ) `
 ( M  .x.  X ) ) )
3633, 35oveq12d 6091 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  .x.  X
)  .+  ( -u M  .x.  X ) )  =  ( ( ( inv g `  G ) `
 ( N  .x.  X ) )  .+  ( ( inv g `  G ) `  ( M  .x.  X ) ) ) )
371, 2mulgcl 14899 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  X  e.  B )  ->  ( M  .x.  X )  e.  B )
386, 11, 13, 37syl3anc 1184 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( M  .x.  X )  e.  B )
391, 2mulgcl 14899 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
406, 8, 13, 39syl3anc 1184 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  ( N  .x.  X )  e.  B )
411, 3, 28grpinvadd 14859 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( M  .x.  X )  e.  B  /\  ( N  .x.  X )  e.  B )  ->  (
( inv g `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) )  =  ( ( ( inv g `  G
) `  ( N  .x.  X ) )  .+  ( ( inv g `  G ) `  ( M  .x.  X ) ) ) )
426, 38, 40, 41syl3anc 1184 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( inv g `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) )  =  ( ( ( inv g `  G
) `  ( N  .x.  X ) )  .+  ( ( inv g `  G ) `  ( M  .x.  X ) ) ) )
4336, 42eqtr4d 2470 . . . . 5  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( -u N  .x.  X
)  .+  ( -u M  .x.  X ) )  =  ( ( inv g `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) )
4424, 31, 433eqtr3d 2475 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( inv g `  G ) `  (
( M  +  N
)  .x.  X )
)  =  ( ( inv g `  G
) `  ( ( M  .x.  X )  .+  ( N  .x.  X ) ) ) )
4544fveq2d 5724 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( inv g `  G ) `  (
( inv g `  G ) `  (
( M  +  N
)  .x.  X )
) )  =  ( ( inv g `  G ) `  (
( inv g `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) ) )
461, 2mulgcl 14899 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M  +  N
)  e.  ZZ  /\  X  e.  B )  ->  ( ( M  +  N )  .x.  X
)  e.  B )
476, 27, 13, 46syl3anc 1184 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( M  +  N
)  .x.  X )  e.  B )
481, 28grpinvinv 14850 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( M  +  N )  .x.  X
)  e.  B )  ->  ( ( inv g `  G ) `
 ( ( inv g `  G ) `
 ( ( M  +  N )  .x.  X ) ) )  =  ( ( M  +  N )  .x.  X ) )
496, 47, 48syl2anc 643 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( inv g `  G ) `  (
( inv g `  G ) `  (
( M  +  N
)  .x.  X )
) )  =  ( ( M  +  N
)  .x.  X )
)
501, 3grpcl 14810 . . . . 5  |-  ( ( G  e.  Grp  /\  ( M  .x.  X )  e.  B  /\  ( N  .x.  X )  e.  B )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  e.  B )
516, 38, 40, 50syl3anc 1184 . . . 4  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( M  .x.  X
)  .+  ( N  .x.  X ) )  e.  B )
521, 28grpinvinv 14850 . . . 4  |-  ( ( G  e.  Grp  /\  ( ( M  .x.  X )  .+  ( N  .x.  X ) )  e.  B )  -> 
( ( inv g `  G ) `  (
( inv g `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) )  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
536, 51, 52syl2anc 643 . . 3  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( inv g `  G ) `  (
( inv g `  G ) `  (
( M  .x.  X
)  .+  ( N  .x.  X ) ) ) )  =  ( ( M  .x.  X ) 
.+  ( N  .x.  X ) ) )
5445, 49, 533eqtr3d 2475 . 2  |-  ( ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  /\  -u ( M  +  N )  e. 
NN0 )  ->  (
( M  +  N
)  .x.  X )  =  ( ( M 
.x.  X )  .+  ( N  .x.  X ) ) )
55 elznn0 10288 . . . 4  |-  ( ( M  +  N )  e.  ZZ  <->  ( ( M  +  N )  e.  RR  /\  ( ( M  +  N )  e.  NN0  \/  -u ( M  +  N )  e.  NN0 ) ) )
5655simprbi 451 . . 3  |-  ( ( M  +  N )  e.  ZZ  ->  (
( M  +  N
)  e.  NN0  \/  -u ( M  +  N
)  e.  NN0 )
)
5726, 56syl 16 . 2  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  N )  e.  NN0  \/  -u ( M  +  N )  e.  NN0 ) )
585, 54, 57mpjaodan 762 1  |-  ( ( G  e.  Grp  /\  ( M  e.  ZZ  /\  N  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5446  (class class class)co 6073   RRcr 8981    + caddc 8985   -ucneg 9284   NN0cn0 10213   ZZcz 10274   Basecbs 13461   +g cplusg 13521   Grpcgrp 14677   inv gcminusg 14678  .gcmg 14681
This theorem is referenced by:  mulgp1  14908  mulgneg2  14909  mulgsubdir  14913  cycsubgcl  14958  odbezout  15186  cygabl  15492  ablfacrp  15616  pgpfac1lem2  15625  pgpfac1lem3  15627  mulgghm2  16778  zlmlmod  16796  cygznlem3  16842  dchrptlem2  21041
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-seq 11316  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805  df-mulg 14807
  Copyright terms: Public domain W3C validator