MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgghm2 Structured version   Unicode version

Theorem mulgghm2 16778
Description: The powers of a group element give a homomorphism from 
ZZ to a group. (Contributed by Mario Carneiro, 13-Jun-2015.)
Hypotheses
Ref Expression
mulgghm2.1  |-  Z  =  (flds  ZZ )
mulgghm2.2  |-  .x.  =  (.g
`  R )
mulgghm2.3  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
mulgghm2.4  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
mulgghm2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F  e.  ( Z  GrpHom  R ) )
Distinct variable groups:    B, n    R, n    .x. , n    n, Z    .1. ,
n
Allowed substitution hint:    F( n)

Proof of Theorem mulgghm2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 444 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  R  e.  Grp )
2 zsubrg 16744 . . . 4  |-  ZZ  e.  (SubRing ` fld )
3 mulgghm2.1 . . . . 5  |-  Z  =  (flds  ZZ )
43subrgrng 15863 . . . 4  |-  ( ZZ  e.  (SubRing ` fld )  ->  Z  e. 
Ring )
5 rnggrp 15661 . . . 4  |-  ( Z  e.  Ring  ->  Z  e. 
Grp )
62, 4, 5mp2b 10 . . 3  |-  Z  e. 
Grp
71, 6jctil 524 . 2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
( Z  e.  Grp  /\  R  e.  Grp )
)
8 mulgghm2.4 . . . . . . 7  |-  B  =  ( Base `  R
)
9 mulgghm2.2 . . . . . . 7  |-  .x.  =  (.g
`  R )
108, 9mulgcl 14899 . . . . . 6  |-  ( ( R  e.  Grp  /\  n  e.  ZZ  /\  .1.  e.  B )  ->  (
n  .x.  .1.  )  e.  B )
11103expa 1153 . . . . 5  |-  ( ( ( R  e.  Grp  /\  n  e.  ZZ )  /\  .1.  e.  B
)  ->  ( n  .x.  .1.  )  e.  B
)
1211an32s 780 . . . 4  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  n  e.  ZZ )  ->  ( n  .x.  .1.  )  e.  B
)
13 mulgghm2.3 . . . 4  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
1412, 13fmptd 5885 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F : ZZ --> B )
15 eqid 2435 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
168, 9, 15mulgdir 14907 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ  /\  .1.  e.  B ) )  ->  ( ( x  +  y )  .x.  .1.  )  =  (
( x  .x.  .1.  ) ( +g  `  R
) ( y  .x.  .1.  ) ) )
17163exp2 1171 . . . . . . 7  |-  ( R  e.  Grp  ->  (
x  e.  ZZ  ->  ( y  e.  ZZ  ->  (  .1.  e.  B  -> 
( ( x  +  y )  .x.  .1.  )  =  ( (
x  .x.  .1.  )
( +g  `  R ) ( y  .x.  .1.  ) ) ) ) ) )
1817imp42 578 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  /\  .1.  e.  B )  ->  (
( x  +  y )  .x.  .1.  )  =  ( ( x 
.x.  .1.  ) ( +g  `  R ) ( y  .x.  .1.  )
) )
1918an32s 780 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( x  +  y )  .x.  .1.  )  =  ( (
x  .x.  .1.  )
( +g  `  R ) ( y  .x.  .1.  ) ) )
20 zaddcl 10309 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  +  y )  e.  ZZ )
2120adantl 453 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( x  +  y )  e.  ZZ )
22 oveq1 6080 . . . . . . 7  |-  ( n  =  ( x  +  y )  ->  (
n  .x.  .1.  )  =  ( ( x  +  y )  .x.  .1.  ) )
23 ovex 6098 . . . . . . 7  |-  ( ( x  +  y ) 
.x.  .1.  )  e.  _V
2422, 13, 23fvmpt 5798 . . . . . 6  |-  ( ( x  +  y )  e.  ZZ  ->  ( F `  ( x  +  y ) )  =  ( ( x  +  y )  .x.  .1.  ) )
2521, 24syl 16 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  (
x  +  y ) )  =  ( ( x  +  y ) 
.x.  .1.  ) )
26 oveq1 6080 . . . . . . . 8  |-  ( n  =  x  ->  (
n  .x.  .1.  )  =  ( x  .x.  .1.  ) )
27 ovex 6098 . . . . . . . 8  |-  ( x 
.x.  .1.  )  e.  _V
2826, 13, 27fvmpt 5798 . . . . . . 7  |-  ( x  e.  ZZ  ->  ( F `  x )  =  ( x  .x.  .1.  ) )
29 oveq1 6080 . . . . . . . 8  |-  ( n  =  y  ->  (
n  .x.  .1.  )  =  ( y  .x.  .1.  ) )
30 ovex 6098 . . . . . . . 8  |-  ( y 
.x.  .1.  )  e.  _V
3129, 13, 30fvmpt 5798 . . . . . . 7  |-  ( y  e.  ZZ  ->  ( F `  y )  =  ( y  .x.  .1.  ) )
3228, 31oveqan12d 6092 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( F `  x ) ( +g  `  R ) ( F `
 y ) )  =  ( ( x 
.x.  .1.  ) ( +g  `  R ) ( y  .x.  .1.  )
) )
3332adantl 453 . . . . 5  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( ( F `  x ) ( +g  `  R ) ( F `
 y ) )  =  ( ( x 
.x.  .1.  ) ( +g  `  R ) ( y  .x.  .1.  )
) )
3419, 25, 333eqtr4d 2477 . . . 4  |-  ( ( ( R  e.  Grp  /\  .1.  e.  B )  /\  ( x  e.  ZZ  /\  y  e.  ZZ ) )  -> 
( F `  (
x  +  y ) )  =  ( ( F `  x ) ( +g  `  R
) ( F `  y ) ) )
3534ralrimivva 2790 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y ) )  =  ( ( F `
 x ) ( +g  `  R ) ( F `  y
) ) )
3614, 35jca 519 . 2  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
( F : ZZ --> B  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y
) )  =  ( ( F `  x
) ( +g  `  R
) ( F `  y ) ) ) )
373subrgbas 15869 . . . 4  |-  ( ZZ  e.  (SubRing ` fld )  ->  ZZ  =  ( Base `  Z )
)
382, 37ax-mp 8 . . 3  |-  ZZ  =  ( Base `  Z )
39 cnfldadd 16700 . . . . 5  |-  +  =  ( +g  ` fld )
403, 39ressplusg 13563 . . . 4  |-  ( ZZ  e.  (SubRing ` fld )  ->  +  =  ( +g  `  Z ) )
412, 40ax-mp 8 . . 3  |-  +  =  ( +g  `  Z )
4238, 8, 41, 15isghm 14998 . 2  |-  ( F  e.  ( Z  GrpHom  R )  <->  ( ( Z  e.  Grp  /\  R  e.  Grp )  /\  ( F : ZZ --> B  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( F `  ( x  +  y ) )  =  ( ( F `
 x ) ( +g  `  R ) ( F `  y
) ) ) ) )
437, 36, 42sylanbrc 646 1  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  ->  F  e.  ( Z  GrpHom  R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697    e. cmpt 4258   -->wf 5442   ` cfv 5446  (class class class)co 6073    + caddc 8985   ZZcz 10274   Basecbs 13461   ↾s cress 13462   +g cplusg 13521   Grpcgrp 14677  .gcmg 14681    GrpHom cghm 14995   Ringcrg 15652  SubRingcsubrg 15856  ℂfldccnfld 16695
This theorem is referenced by:  mulgrhm  16779  frgpcyg  16846
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-fz 11036  df-seq 11316  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805  df-mulg 14807  df-subg 14933  df-ghm 14996  df-cmn 15406  df-mgp 15641  df-rng 15655  df-cring 15656  df-ur 15657  df-subrg 15858  df-cnfld 16696
  Copyright terms: Public domain W3C validator