MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgmhm Unicode version

Theorem mulgmhm 15127
Description: The map from  x to  n x for a fixed positive integer  n is a monoid homomorphism if the monoid is commutative. (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
mulgmhm.b  |-  B  =  ( Base `  G
)
mulgmhm.m  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgmhm  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  (
x  e.  B  |->  ( M  .x.  x ) )  e.  ( G MndHom  G ) )
Distinct variable groups:    x, B    x, G    x, M    x,  .x.

Proof of Theorem mulgmhm
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnmnd 15104 . . . 4  |-  ( G  e. CMnd  ->  G  e.  Mnd )
21adantr 451 . . 3  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  G  e.  Mnd )
32, 2jca 518 . 2  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  ( G  e.  Mnd  /\  G  e.  Mnd ) )
4 mulgmhm.b . . . . . . 7  |-  B  =  ( Base `  G
)
5 mulgmhm.m . . . . . . 7  |-  .x.  =  (.g
`  G )
64, 5mulgnn0cl 14583 . . . . . 6  |-  ( ( G  e.  Mnd  /\  M  e.  NN0  /\  x  e.  B )  ->  ( M  .x.  x )  e.  B )
71, 6syl3an1 1215 . . . . 5  |-  ( ( G  e. CMnd  /\  M  e.  NN0  /\  x  e.  B )  ->  ( M  .x.  x )  e.  B )
873expa 1151 . . . 4  |-  ( ( ( G  e. CMnd  /\  M  e.  NN0 )  /\  x  e.  B )  ->  ( M  .x.  x
)  e.  B )
9 eqid 2283 . . . 4  |-  ( x  e.  B  |->  ( M 
.x.  x ) )  =  ( x  e.  B  |->  ( M  .x.  x ) )
108, 9fmptd 5684 . . 3  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  (
x  e.  B  |->  ( M  .x.  x ) ) : B --> B )
11 3anass 938 . . . . . . 7  |-  ( ( M  e.  NN0  /\  y  e.  B  /\  z  e.  B )  <->  ( M  e.  NN0  /\  ( y  e.  B  /\  z  e.  B
) ) )
12 eqid 2283 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
134, 5, 12mulgnn0di 15125 . . . . . . 7  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  y  e.  B  /\  z  e.  B ) )  -> 
( M  .x.  (
y ( +g  `  G
) z ) )  =  ( ( M 
.x.  y ) ( +g  `  G ) ( M  .x.  z
) ) )
1411, 13sylan2br 462 . . . . . 6  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  (
y  e.  B  /\  z  e.  B )
) )  ->  ( M  .x.  ( y ( +g  `  G ) z ) )  =  ( ( M  .x.  y ) ( +g  `  G ) ( M 
.x.  z ) ) )
1514anassrs 629 . . . . 5  |-  ( ( ( G  e. CMnd  /\  M  e.  NN0 )  /\  ( y  e.  B  /\  z  e.  B
) )  ->  ( M  .x.  ( y ( +g  `  G ) z ) )  =  ( ( M  .x.  y ) ( +g  `  G ) ( M 
.x.  z ) ) )
164, 12mndcl 14372 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  y  e.  B  /\  z  e.  B )  ->  ( y ( +g  `  G ) z )  e.  B )
17163expb 1152 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( y  e.  B  /\  z  e.  B
) )  ->  (
y ( +g  `  G
) z )  e.  B )
182, 17sylan 457 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  M  e.  NN0 )  /\  ( y  e.  B  /\  z  e.  B
) )  ->  (
y ( +g  `  G
) z )  e.  B )
19 oveq2 5866 . . . . . . 7  |-  ( x  =  ( y ( +g  `  G ) z )  ->  ( M  .x.  x )  =  ( M  .x.  (
y ( +g  `  G
) z ) ) )
20 ovex 5883 . . . . . . 7  |-  ( M 
.x.  ( y ( +g  `  G ) z ) )  e. 
_V
2119, 9, 20fvmpt 5602 . . . . . 6  |-  ( ( y ( +g  `  G
) z )  e.  B  ->  ( (
x  e.  B  |->  ( M  .x.  x ) ) `  ( y ( +g  `  G
) z ) )  =  ( M  .x.  ( y ( +g  `  G ) z ) ) )
2218, 21syl 15 . . . . 5  |-  ( ( ( G  e. CMnd  /\  M  e.  NN0 )  /\  ( y  e.  B  /\  z  e.  B
) )  ->  (
( x  e.  B  |->  ( M  .x.  x
) ) `  (
y ( +g  `  G
) z ) )  =  ( M  .x.  ( y ( +g  `  G ) z ) ) )
23 oveq2 5866 . . . . . . . 8  |-  ( x  =  y  ->  ( M  .x.  x )  =  ( M  .x.  y
) )
24 ovex 5883 . . . . . . . 8  |-  ( M 
.x.  y )  e. 
_V
2523, 9, 24fvmpt 5602 . . . . . . 7  |-  ( y  e.  B  ->  (
( x  e.  B  |->  ( M  .x.  x
) ) `  y
)  =  ( M 
.x.  y ) )
26 oveq2 5866 . . . . . . . 8  |-  ( x  =  z  ->  ( M  .x.  x )  =  ( M  .x.  z
) )
27 ovex 5883 . . . . . . . 8  |-  ( M 
.x.  z )  e. 
_V
2826, 9, 27fvmpt 5602 . . . . . . 7  |-  ( z  e.  B  ->  (
( x  e.  B  |->  ( M  .x.  x
) ) `  z
)  =  ( M 
.x.  z ) )
2925, 28oveqan12d 5877 . . . . . 6  |-  ( ( y  e.  B  /\  z  e.  B )  ->  ( ( ( x  e.  B  |->  ( M 
.x.  x ) ) `
 y ) ( +g  `  G ) ( ( x  e.  B  |->  ( M  .x.  x ) ) `  z ) )  =  ( ( M  .x.  y ) ( +g  `  G ) ( M 
.x.  z ) ) )
3029adantl 452 . . . . 5  |-  ( ( ( G  e. CMnd  /\  M  e.  NN0 )  /\  ( y  e.  B  /\  z  e.  B
) )  ->  (
( ( x  e.  B  |->  ( M  .x.  x ) ) `  y ) ( +g  `  G ) ( ( x  e.  B  |->  ( M  .x.  x ) ) `  z ) )  =  ( ( M  .x.  y ) ( +g  `  G
) ( M  .x.  z ) ) )
3115, 22, 303eqtr4d 2325 . . . 4  |-  ( ( ( G  e. CMnd  /\  M  e.  NN0 )  /\  ( y  e.  B  /\  z  e.  B
) )  ->  (
( x  e.  B  |->  ( M  .x.  x
) ) `  (
y ( +g  `  G
) z ) )  =  ( ( ( x  e.  B  |->  ( M  .x.  x ) ) `  y ) ( +g  `  G
) ( ( x  e.  B  |->  ( M 
.x.  x ) ) `
 z ) ) )
3231ralrimivva 2635 . . 3  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  A. y  e.  B  A. z  e.  B  ( (
x  e.  B  |->  ( M  .x.  x ) ) `  ( y ( +g  `  G
) z ) )  =  ( ( ( x  e.  B  |->  ( M  .x.  x ) ) `  y ) ( +g  `  G
) ( ( x  e.  B  |->  ( M 
.x.  x ) ) `
 z ) ) )
33 eqid 2283 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
344, 33mndidcl 14391 . . . . 5  |-  ( G  e.  Mnd  ->  ( 0g `  G )  e.  B )
35 oveq2 5866 . . . . . 6  |-  ( x  =  ( 0g `  G )  ->  ( M  .x.  x )  =  ( M  .x.  ( 0g `  G ) ) )
36 ovex 5883 . . . . . 6  |-  ( M 
.x.  ( 0g `  G ) )  e. 
_V
3735, 9, 36fvmpt 5602 . . . . 5  |-  ( ( 0g `  G )  e.  B  ->  (
( x  e.  B  |->  ( M  .x.  x
) ) `  ( 0g `  G ) )  =  ( M  .x.  ( 0g `  G ) ) )
382, 34, 373syl 18 . . . 4  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  (
( x  e.  B  |->  ( M  .x.  x
) ) `  ( 0g `  G ) )  =  ( M  .x.  ( 0g `  G ) ) )
394, 5, 33mulgnn0z 14587 . . . . 5  |-  ( ( G  e.  Mnd  /\  M  e.  NN0 )  -> 
( M  .x.  ( 0g `  G ) )  =  ( 0g `  G ) )
401, 39sylan 457 . . . 4  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  ( M  .x.  ( 0g `  G ) )  =  ( 0g `  G
) )
4138, 40eqtrd 2315 . . 3  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  (
( x  e.  B  |->  ( M  .x.  x
) ) `  ( 0g `  G ) )  =  ( 0g `  G ) )
4210, 32, 413jca 1132 . 2  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  (
( x  e.  B  |->  ( M  .x.  x
) ) : B --> B  /\  A. y  e.  B  A. z  e.  B  ( ( x  e.  B  |->  ( M 
.x.  x ) ) `
 ( y ( +g  `  G ) z ) )  =  ( ( ( x  e.  B  |->  ( M 
.x.  x ) ) `
 y ) ( +g  `  G ) ( ( x  e.  B  |->  ( M  .x.  x ) ) `  z ) )  /\  ( ( x  e.  B  |->  ( M  .x.  x ) ) `  ( 0g `  G ) )  =  ( 0g
`  G ) ) )
434, 4, 12, 12, 33, 33ismhm 14417 . 2  |-  ( ( x  e.  B  |->  ( M  .x.  x ) )  e.  ( G MndHom  G )  <->  ( ( G  e.  Mnd  /\  G  e.  Mnd )  /\  (
( x  e.  B  |->  ( M  .x.  x
) ) : B --> B  /\  A. y  e.  B  A. z  e.  B  ( ( x  e.  B  |->  ( M 
.x.  x ) ) `
 ( y ( +g  `  G ) z ) )  =  ( ( ( x  e.  B  |->  ( M 
.x.  x ) ) `
 y ) ( +g  `  G ) ( ( x  e.  B  |->  ( M  .x.  x ) ) `  z ) )  /\  ( ( x  e.  B  |->  ( M  .x.  x ) ) `  ( 0g `  G ) )  =  ( 0g
`  G ) ) ) )
443, 42, 43sylanbrc 645 1  |-  ( ( G  e. CMnd  /\  M  e.  NN0 )  ->  (
x  e.  B  |->  ( M  .x.  x ) )  e.  ( G MndHom  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858   NN0cn0 9965   Basecbs 13148   +g cplusg 13208   0gc0g 13400   Mndcmnd 14361  .gcmg 14366   MndHom cmhm 14413  CMndccmn 15089
This theorem is referenced by:  gsummulglem  15213
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-0g 13404  df-mnd 14367  df-mhm 14415  df-mulg 14492  df-cmn 15091
  Copyright terms: Public domain W3C validator