MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0di Unicode version

Theorem mulgnn0di 15141
Description: Group multiple of a sum, for nonnegative multiples. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgdi.b  |-  B  =  ( Base `  G
)
mulgdi.m  |-  .x.  =  (.g
`  G )
mulgdi.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnn0di  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( M  .x.  ( X  .+  Y ) )  =  ( ( M 
.x.  X )  .+  ( M  .x.  Y ) ) )

Proof of Theorem mulgnn0di
Dummy variables  x  k  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnmnd 15120 . . . . . 6  |-  ( G  e. CMnd  ->  G  e.  Mnd )
21ad2antrr 706 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  G  e. 
Mnd )
3 mulgdi.b . . . . . . 7  |-  B  =  ( Base `  G
)
4 mulgdi.p . . . . . . 7  |-  .+  =  ( +g  `  G )
53, 4mndcl 14388 . . . . . 6  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
653expb 1152 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
72, 6sylan 457 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  e.  B
)
8 simpll 730 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  G  e. CMnd
)
93, 4cmncom 15121 . . . . . 6  |-  ( ( G  e. CMnd  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  =  ( y  .+  x ) )
1093expb 1152 . . . . 5  |-  ( ( G  e. CMnd  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
118, 10sylan 457 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
123, 4mndass 14389 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
132, 12sylan 457 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
14 simpr 447 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  M  e.  NN )
15 nnuz 10279 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
1614, 15syl6eleq 2386 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  M  e.  ( ZZ>= `  1 )
)
17 simplr2 998 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  X  e.  B )
18 elfznn 10835 . . . . . 6  |-  ( k  e.  ( 1 ... M )  ->  k  e.  NN )
19 fvconst2g 5743 . . . . . 6  |-  ( ( X  e.  B  /\  k  e.  NN )  ->  ( ( NN  X.  { X } ) `  k )  =  X )
2017, 18, 19syl2an 463 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  { X } ) `  k
)  =  X )
2117adantr 451 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  X  e.  B )
2220, 21eqeltrd 2370 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  { X } ) `  k
)  e.  B )
23 simplr3 999 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  Y  e.  B )
24 fvconst2g 5743 . . . . . 6  |-  ( ( Y  e.  B  /\  k  e.  NN )  ->  ( ( NN  X.  { Y } ) `  k )  =  Y )
2523, 18, 24syl2an 463 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  { Y } ) `  k
)  =  Y )
2623adantr 451 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  Y  e.  B )
2725, 26eqeltrd 2370 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  { Y } ) `  k
)  e.  B )
283, 4mndcl 14388 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
292, 17, 23, 28syl3anc 1182 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( X 
.+  Y )  e.  B )
30 fvconst2g 5743 . . . . . 6  |-  ( ( ( X  .+  Y
)  e.  B  /\  k  e.  NN )  ->  ( ( NN  X.  { ( X  .+  Y ) } ) `
 k )  =  ( X  .+  Y
) )
3129, 18, 30syl2an 463 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  {
( X  .+  Y
) } ) `  k )  =  ( X  .+  Y ) )
3220, 25oveq12d 5892 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( ( NN  X.  { X } ) `  k )  .+  (
( NN  X.  { Y } ) `  k
) )  =  ( X  .+  Y ) )
3331, 32eqtr4d 2331 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  {
( X  .+  Y
) } ) `  k )  =  ( ( ( NN  X.  { X } ) `  k )  .+  (
( NN  X.  { Y } ) `  k
) ) )
347, 11, 13, 16, 22, 27, 33seqcaopr 11099 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  (  seq  1 (  .+  , 
( NN  X.  {
( X  .+  Y
) } ) ) `
 M )  =  ( (  seq  1
(  .+  ,  ( NN  X.  { X }
) ) `  M
)  .+  (  seq  1 (  .+  , 
( NN  X.  { Y } ) ) `  M ) ) )
35 mulgdi.m . . . . 5  |-  .x.  =  (.g
`  G )
36 eqid 2296 . . . . 5  |-  seq  1
(  .+  ,  ( NN  X.  { ( X 
.+  Y ) } ) )  =  seq  1 (  .+  , 
( NN  X.  {
( X  .+  Y
) } ) )
373, 4, 35, 36mulgnn 14589 . . . 4  |-  ( ( M  e.  NN  /\  ( X  .+  Y )  e.  B )  -> 
( M  .x.  ( X  .+  Y ) )  =  (  seq  1
(  .+  ,  ( NN  X.  { ( X 
.+  Y ) } ) ) `  M
) )
3814, 29, 37syl2anc 642 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( M 
.x.  ( X  .+  Y ) )  =  (  seq  1 ( 
.+  ,  ( NN 
X.  { ( X 
.+  Y ) } ) ) `  M
) )
39 eqid 2296 . . . . . 6  |-  seq  1
(  .+  ,  ( NN  X.  { X }
) )  =  seq  1 (  .+  , 
( NN  X.  { X } ) )
403, 4, 35, 39mulgnn 14589 . . . . 5  |-  ( ( M  e.  NN  /\  X  e.  B )  ->  ( M  .x.  X
)  =  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
4114, 17, 40syl2anc 642 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( M 
.x.  X )  =  (  seq  1 ( 
.+  ,  ( NN 
X.  { X }
) ) `  M
) )
42 eqid 2296 . . . . . 6  |-  seq  1
(  .+  ,  ( NN  X.  { Y }
) )  =  seq  1 (  .+  , 
( NN  X.  { Y } ) )
433, 4, 35, 42mulgnn 14589 . . . . 5  |-  ( ( M  e.  NN  /\  Y  e.  B )  ->  ( M  .x.  Y
)  =  (  seq  1 (  .+  , 
( NN  X.  { Y } ) ) `  M ) )
4414, 23, 43syl2anc 642 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( M 
.x.  Y )  =  (  seq  1 ( 
.+  ,  ( NN 
X.  { Y }
) ) `  M
) )
4541, 44oveq12d 5892 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( ( M  .x.  X ) 
.+  ( M  .x.  Y ) )  =  ( (  seq  1
(  .+  ,  ( NN  X.  { X }
) ) `  M
)  .+  (  seq  1 (  .+  , 
( NN  X.  { Y } ) ) `  M ) ) )
4634, 38, 453eqtr4d 2338 . 2  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( M 
.x.  ( X  .+  Y ) )  =  ( ( M  .x.  X )  .+  ( M  .x.  Y ) ) )
471ad2antrr 706 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  G  e.  Mnd )
48 simplr2 998 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  X  e.  B )
49 simplr3 999 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  Y  e.  B )
5047, 48, 49, 28syl3anc 1182 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( X  .+  Y )  e.  B )
51 eqid 2296 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
523, 51, 35mulg0 14588 . . . . 5  |-  ( ( X  .+  Y )  e.  B  ->  (
0  .x.  ( X  .+  Y ) )  =  ( 0g `  G
) )
5350, 52syl 15 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  ( X  .+  Y ) )  =  ( 0g `  G
) )
54 eqid 2296 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
5554, 51mndidcl 14407 . . . . . . 7  |-  ( G  e.  Mnd  ->  ( 0g `  G )  e.  ( Base `  G
) )
5654, 4, 51mndlid 14409 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( 0g `  G )  e.  ( Base `  G
) )  ->  (
( 0g `  G
)  .+  ( 0g `  G ) )  =  ( 0g `  G
) )
5755, 56mpdan 649 . . . . . 6  |-  ( G  e.  Mnd  ->  (
( 0g `  G
)  .+  ( 0g `  G ) )  =  ( 0g `  G
) )
581, 57syl 15 . . . . 5  |-  ( G  e. CMnd  ->  ( ( 0g
`  G )  .+  ( 0g `  G ) )  =  ( 0g
`  G ) )
5958ad2antrr 706 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
( 0g `  G
)  .+  ( 0g `  G ) )  =  ( 0g `  G
) )
6053, 59eqtr4d 2331 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  ( X  .+  Y ) )  =  ( ( 0g `  G )  .+  ( 0g `  G ) ) )
61 simpr 447 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  M  =  0 )
6261oveq1d 5889 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  ( X  .+  Y ) )  =  ( 0  .x.  ( X  .+  Y ) ) )
6361oveq1d 5889 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  X )  =  ( 0  .x.  X
) )
643, 51, 35mulg0 14588 . . . . . 6  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
6548, 64syl 15 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  X )  =  ( 0g `  G ) )
6663, 65eqtrd 2328 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  X )  =  ( 0g `  G
) )
6761oveq1d 5889 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  Y )  =  ( 0  .x.  Y
) )
683, 51, 35mulg0 14588 . . . . . 6  |-  ( Y  e.  B  ->  (
0  .x.  Y )  =  ( 0g `  G ) )
6949, 68syl 15 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  Y )  =  ( 0g `  G ) )
7067, 69eqtrd 2328 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  Y )  =  ( 0g `  G
) )
7166, 70oveq12d 5892 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
( M  .x.  X
)  .+  ( M  .x.  Y ) )  =  ( ( 0g `  G )  .+  ( 0g `  G ) ) )
7260, 62, 713eqtr4d 2338 . 2  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  ( X  .+  Y ) )  =  ( ( M  .x.  X )  .+  ( M  .x.  Y ) ) )
73 simpr1 961 . . 3  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  ->  M  e.  NN0 )
74 elnn0 9983 . . 3  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
7573, 74sylib 188 . 2  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( M  e.  NN  \/  M  =  0
) )
7646, 72, 75mpjaodan 761 1  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( M  .x.  ( X  .+  Y ) )  =  ( ( M 
.x.  X )  .+  ( M  .x.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   {csn 3653    X. cxp 4703   ` cfv 5271  (class class class)co 5874   0cc0 8753   1c1 8754   NNcn 9762   NN0cn0 9981   ZZ>=cuz 10246   ...cfz 10798    seq cseq 11062   Basecbs 13164   +g cplusg 13224   0gc0g 13416   Mndcmnd 14377  .gcmg 14382  CMndccmn 15105
This theorem is referenced by:  mulgdi  15142  mulgmhm  15143
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-fzo 10887  df-seq 11063  df-0g 13420  df-mnd 14383  df-mulg 14508  df-cmn 15107
  Copyright terms: Public domain W3C validator