MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0di Unicode version

Theorem mulgnn0di 15377
Description: Group multiple of a sum, for nonnegative multiples. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgdi.b  |-  B  =  ( Base `  G
)
mulgdi.m  |-  .x.  =  (.g
`  G )
mulgdi.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnn0di  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( M  .x.  ( X  .+  Y ) )  =  ( ( M 
.x.  X )  .+  ( M  .x.  Y ) ) )

Proof of Theorem mulgnn0di
Dummy variables  x  k  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmnmnd 15356 . . . . . 6  |-  ( G  e. CMnd  ->  G  e.  Mnd )
21ad2antrr 707 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  G  e. 
Mnd )
3 mulgdi.b . . . . . . 7  |-  B  =  ( Base `  G
)
4 mulgdi.p . . . . . . 7  |-  .+  =  ( +g  `  G )
53, 4mndcl 14624 . . . . . 6  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
653expb 1154 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
72, 6sylan 458 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  e.  B
)
8 simpll 731 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  G  e. CMnd
)
93, 4cmncom 15357 . . . . . 6  |-  ( ( G  e. CMnd  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  =  ( y  .+  x ) )
1093expb 1154 . . . . 5  |-  ( ( G  e. CMnd  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
118, 10sylan 458 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
123, 4mndass 14625 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
132, 12sylan 458 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
14 simpr 448 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  M  e.  NN )
15 nnuz 10455 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
1614, 15syl6eleq 2479 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  M  e.  ( ZZ>= `  1 )
)
17 simplr2 1000 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  X  e.  B )
18 elfznn 11014 . . . . . 6  |-  ( k  e.  ( 1 ... M )  ->  k  e.  NN )
19 fvconst2g 5886 . . . . . 6  |-  ( ( X  e.  B  /\  k  e.  NN )  ->  ( ( NN  X.  { X } ) `  k )  =  X )
2017, 18, 19syl2an 464 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  { X } ) `  k
)  =  X )
2117adantr 452 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  X  e.  B )
2220, 21eqeltrd 2463 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  { X } ) `  k
)  e.  B )
23 simplr3 1001 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  Y  e.  B )
24 fvconst2g 5886 . . . . . 6  |-  ( ( Y  e.  B  /\  k  e.  NN )  ->  ( ( NN  X.  { Y } ) `  k )  =  Y )
2523, 18, 24syl2an 464 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  { Y } ) `  k
)  =  Y )
2623adantr 452 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  Y  e.  B )
2725, 26eqeltrd 2463 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  { Y } ) `  k
)  e.  B )
283, 4mndcl 14624 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y
)  e.  B )
292, 17, 23, 28syl3anc 1184 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( X 
.+  Y )  e.  B )
30 fvconst2g 5886 . . . . . 6  |-  ( ( ( X  .+  Y
)  e.  B  /\  k  e.  NN )  ->  ( ( NN  X.  { ( X  .+  Y ) } ) `
 k )  =  ( X  .+  Y
) )
3129, 18, 30syl2an 464 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  {
( X  .+  Y
) } ) `  k )  =  ( X  .+  Y ) )
3220, 25oveq12d 6040 . . . . 5  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( ( NN  X.  { X } ) `  k )  .+  (
( NN  X.  { Y } ) `  k
) )  =  ( X  .+  Y ) )
3331, 32eqtr4d 2424 . . . 4  |-  ( ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  /\  k  e.  ( 1 ... M
) )  ->  (
( NN  X.  {
( X  .+  Y
) } ) `  k )  =  ( ( ( NN  X.  { X } ) `  k )  .+  (
( NN  X.  { Y } ) `  k
) ) )
347, 11, 13, 16, 22, 27, 33seqcaopr 11289 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  (  seq  1 (  .+  , 
( NN  X.  {
( X  .+  Y
) } ) ) `
 M )  =  ( (  seq  1
(  .+  ,  ( NN  X.  { X }
) ) `  M
)  .+  (  seq  1 (  .+  , 
( NN  X.  { Y } ) ) `  M ) ) )
35 mulgdi.m . . . . 5  |-  .x.  =  (.g
`  G )
36 eqid 2389 . . . . 5  |-  seq  1
(  .+  ,  ( NN  X.  { ( X 
.+  Y ) } ) )  =  seq  1 (  .+  , 
( NN  X.  {
( X  .+  Y
) } ) )
373, 4, 35, 36mulgnn 14825 . . . 4  |-  ( ( M  e.  NN  /\  ( X  .+  Y )  e.  B )  -> 
( M  .x.  ( X  .+  Y ) )  =  (  seq  1
(  .+  ,  ( NN  X.  { ( X 
.+  Y ) } ) ) `  M
) )
3814, 29, 37syl2anc 643 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( M 
.x.  ( X  .+  Y ) )  =  (  seq  1 ( 
.+  ,  ( NN 
X.  { ( X 
.+  Y ) } ) ) `  M
) )
39 eqid 2389 . . . . . 6  |-  seq  1
(  .+  ,  ( NN  X.  { X }
) )  =  seq  1 (  .+  , 
( NN  X.  { X } ) )
403, 4, 35, 39mulgnn 14825 . . . . 5  |-  ( ( M  e.  NN  /\  X  e.  B )  ->  ( M  .x.  X
)  =  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
4114, 17, 40syl2anc 643 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( M 
.x.  X )  =  (  seq  1 ( 
.+  ,  ( NN 
X.  { X }
) ) `  M
) )
42 eqid 2389 . . . . . 6  |-  seq  1
(  .+  ,  ( NN  X.  { Y }
) )  =  seq  1 (  .+  , 
( NN  X.  { Y } ) )
433, 4, 35, 42mulgnn 14825 . . . . 5  |-  ( ( M  e.  NN  /\  Y  e.  B )  ->  ( M  .x.  Y
)  =  (  seq  1 (  .+  , 
( NN  X.  { Y } ) ) `  M ) )
4414, 23, 43syl2anc 643 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( M 
.x.  Y )  =  (  seq  1 ( 
.+  ,  ( NN 
X.  { Y }
) ) `  M
) )
4541, 44oveq12d 6040 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( ( M  .x.  X ) 
.+  ( M  .x.  Y ) )  =  ( (  seq  1
(  .+  ,  ( NN  X.  { X }
) ) `  M
)  .+  (  seq  1 (  .+  , 
( NN  X.  { Y } ) ) `  M ) ) )
4634, 38, 453eqtr4d 2431 . 2  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  e.  NN )  ->  ( M 
.x.  ( X  .+  Y ) )  =  ( ( M  .x.  X )  .+  ( M  .x.  Y ) ) )
471ad2antrr 707 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  G  e.  Mnd )
48 simplr2 1000 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  X  e.  B )
49 simplr3 1001 . . . . . 6  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  Y  e.  B )
5047, 48, 49, 28syl3anc 1184 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( X  .+  Y )  e.  B )
51 eqid 2389 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
523, 51, 35mulg0 14824 . . . . 5  |-  ( ( X  .+  Y )  e.  B  ->  (
0  .x.  ( X  .+  Y ) )  =  ( 0g `  G
) )
5350, 52syl 16 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  ( X  .+  Y ) )  =  ( 0g `  G
) )
54 eqid 2389 . . . . . . . 8  |-  ( Base `  G )  =  (
Base `  G )
5554, 51mndidcl 14643 . . . . . . 7  |-  ( G  e.  Mnd  ->  ( 0g `  G )  e.  ( Base `  G
) )
5654, 4, 51mndlid 14645 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( 0g `  G )  e.  ( Base `  G
) )  ->  (
( 0g `  G
)  .+  ( 0g `  G ) )  =  ( 0g `  G
) )
5755, 56mpdan 650 . . . . . 6  |-  ( G  e.  Mnd  ->  (
( 0g `  G
)  .+  ( 0g `  G ) )  =  ( 0g `  G
) )
581, 57syl 16 . . . . 5  |-  ( G  e. CMnd  ->  ( ( 0g
`  G )  .+  ( 0g `  G ) )  =  ( 0g
`  G ) )
5958ad2antrr 707 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
( 0g `  G
)  .+  ( 0g `  G ) )  =  ( 0g `  G
) )
6053, 59eqtr4d 2424 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  ( X  .+  Y ) )  =  ( ( 0g `  G )  .+  ( 0g `  G ) ) )
61 simpr 448 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  M  =  0 )
6261oveq1d 6037 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  ( X  .+  Y ) )  =  ( 0  .x.  ( X  .+  Y ) ) )
6361oveq1d 6037 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  X )  =  ( 0  .x.  X
) )
643, 51, 35mulg0 14824 . . . . . 6  |-  ( X  e.  B  ->  (
0  .x.  X )  =  ( 0g `  G ) )
6548, 64syl 16 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  X )  =  ( 0g `  G ) )
6663, 65eqtrd 2421 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  X )  =  ( 0g `  G
) )
6761oveq1d 6037 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  Y )  =  ( 0  .x.  Y
) )
683, 51, 35mulg0 14824 . . . . . 6  |-  ( Y  e.  B  ->  (
0  .x.  Y )  =  ( 0g `  G ) )
6949, 68syl 16 . . . . 5  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
0  .x.  Y )  =  ( 0g `  G ) )
7067, 69eqtrd 2421 . . . 4  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  Y )  =  ( 0g `  G
) )
7166, 70oveq12d 6040 . . 3  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  (
( M  .x.  X
)  .+  ( M  .x.  Y ) )  =  ( ( 0g `  G )  .+  ( 0g `  G ) ) )
7260, 62, 713eqtr4d 2431 . 2  |-  ( ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B )
)  /\  M  = 
0 )  ->  ( M  .x.  ( X  .+  Y ) )  =  ( ( M  .x.  X )  .+  ( M  .x.  Y ) ) )
73 simpr1 963 . . 3  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  ->  M  e.  NN0 )
74 elnn0 10157 . . 3  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
7573, 74sylib 189 . 2  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( M  e.  NN  \/  M  =  0
) )
7646, 72, 75mpjaodan 762 1  |-  ( ( G  e. CMnd  /\  ( M  e.  NN0  /\  X  e.  B  /\  Y  e.  B ) )  -> 
( M  .x.  ( X  .+  Y ) )  =  ( ( M 
.x.  X )  .+  ( M  .x.  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   {csn 3759    X. cxp 4818   ` cfv 5396  (class class class)co 6022   0cc0 8925   1c1 8926   NNcn 9934   NN0cn0 10155   ZZ>=cuz 10422   ...cfz 10977    seq cseq 11252   Basecbs 13398   +g cplusg 13458   0gc0g 13652   Mndcmnd 14613  .gcmg 14618  CMndccmn 15341
This theorem is referenced by:  mulgdi  15378  mulgmhm  15379
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-er 6843  df-en 7048  df-dom 7049  df-sdom 7050  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-n0 10156  df-z 10217  df-uz 10423  df-fz 10978  df-fzo 11068  df-seq 11253  df-0g 13656  df-mnd 14619  df-mulg 14744  df-cmn 15343
  Copyright terms: Public domain W3C validator