MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0z Structured version   Unicode version

Theorem mulgnn0z 14911
Description: A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnn0z.b  |-  B  =  ( Base `  G
)
mulgnn0z.t  |-  .x.  =  (.g
`  G )
mulgnn0z.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
mulgnn0z  |-  ( ( G  e.  Mnd  /\  N  e.  NN0 )  -> 
( N  .x.  .0.  )  =  .0.  )

Proof of Theorem mulgnn0z
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elnn0 10224 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 id 21 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN )
3 mulgnn0z.b . . . . . 6  |-  B  =  ( Base `  G
)
4 mulgnn0z.o . . . . . 6  |-  .0.  =  ( 0g `  G )
53, 4mndidcl 14715 . . . . 5  |-  ( G  e.  Mnd  ->  .0.  e.  B )
6 eqid 2437 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
7 mulgnn0z.t . . . . . 6  |-  .x.  =  (.g
`  G )
8 eqid 2437 . . . . . 6  |-  seq  1
( ( +g  `  G
) ,  ( NN 
X.  {  .0.  } ) )  =  seq  1
( ( +g  `  G
) ,  ( NN 
X.  {  .0.  } ) )
93, 6, 7, 8mulgnn 14897 . . . . 5  |-  ( ( N  e.  NN  /\  .0.  e.  B )  -> 
( N  .x.  .0.  )  =  (  seq  1 ( ( +g  `  G ) ,  ( NN  X.  {  .0.  } ) ) `  N
) )
102, 5, 9syl2anr 466 . . . 4  |-  ( ( G  e.  Mnd  /\  N  e.  NN )  ->  ( N  .x.  .0.  )  =  (  seq  1 ( ( +g  `  G ) ,  ( NN  X.  {  .0.  } ) ) `  N
) )
113, 6, 4mndlid 14717 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  .0.  e.  B )  -> 
(  .0.  ( +g  `  G )  .0.  )  =  .0.  )
125, 11mpdan 651 . . . . . 6  |-  ( G  e.  Mnd  ->  (  .0.  ( +g  `  G
)  .0.  )  =  .0.  )
1312adantr 453 . . . . 5  |-  ( ( G  e.  Mnd  /\  N  e.  NN )  ->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  )
14 simpr 449 . . . . . 6  |-  ( ( G  e.  Mnd  /\  N  e.  NN )  ->  N  e.  NN )
15 nnuz 10522 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
1614, 15syl6eleq 2527 . . . . 5  |-  ( ( G  e.  Mnd  /\  N  e.  NN )  ->  N  e.  ( ZZ>= ` 
1 ) )
175adantr 453 . . . . . 6  |-  ( ( G  e.  Mnd  /\  N  e.  NN )  ->  .0.  e.  B )
18 elfznn 11081 . . . . . 6  |-  ( x  e.  ( 1 ... N )  ->  x  e.  NN )
19 fvconst2g 5946 . . . . . 6  |-  ( (  .0.  e.  B  /\  x  e.  NN )  ->  ( ( NN  X.  {  .0.  } ) `  x )  =  .0.  )
2017, 18, 19syl2an 465 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  N  e.  NN )  /\  x  e.  ( 1 ... N ) )  ->  ( ( NN  X.  {  .0.  }
) `  x )  =  .0.  )
2113, 16, 20seqid3 11368 . . . 4  |-  ( ( G  e.  Mnd  /\  N  e.  NN )  ->  (  seq  1 ( ( +g  `  G
) ,  ( NN 
X.  {  .0.  } ) ) `  N )  =  .0.  )
2210, 21eqtrd 2469 . . 3  |-  ( ( G  e.  Mnd  /\  N  e.  NN )  ->  ( N  .x.  .0.  )  =  .0.  )
23 oveq1 6089 . . . 4  |-  ( N  =  0  ->  ( N  .x.  .0.  )  =  ( 0  .x.  .0.  ) )
243, 4, 7mulg0 14896 . . . . 5  |-  (  .0. 
e.  B  ->  (
0  .x.  .0.  )  =  .0.  )
255, 24syl 16 . . . 4  |-  ( G  e.  Mnd  ->  (
0  .x.  .0.  )  =  .0.  )
2623, 25sylan9eqr 2491 . . 3  |-  ( ( G  e.  Mnd  /\  N  =  0 )  ->  ( N  .x.  .0.  )  =  .0.  )
2722, 26jaodan 762 . 2  |-  ( ( G  e.  Mnd  /\  ( N  e.  NN  \/  N  =  0
) )  ->  ( N  .x.  .0.  )  =  .0.  )
281, 27sylan2b 463 1  |-  ( ( G  e.  Mnd  /\  N  e.  NN0 )  -> 
( N  .x.  .0.  )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1726   {csn 3815    X. cxp 4877   ` cfv 5455  (class class class)co 6082   0cc0 8991   1c1 8992   NNcn 10001   NN0cn0 10222   ZZ>=cuz 10489   ...cfz 11044    seq cseq 11324   Basecbs 13470   +g cplusg 13530   0gc0g 13724   Mndcmnd 14685  .gcmg 14690
This theorem is referenced by:  mulgz  14912  mulgnn0ass  14920  odmodnn0  15179  mulgmhm  15451  tsmsxp  18185
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-inf2 7597  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-nn 10002  df-n0 10223  df-z 10284  df-uz 10490  df-fz 11045  df-seq 11325  df-0g 13728  df-mnd 14691  df-mulg 14816
  Copyright terms: Public domain W3C validator