MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnndir Unicode version

Theorem mulgnndir 14839
Description: Sum of group multiples, for positive multiples. TODO: This can be generalized to a semigroup if/when we introduce them. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnndir  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )

Proof of Theorem mulgnndir
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgnndir.b . . . . . 6  |-  B  =  ( Base `  G
)
2 mulgnndir.p . . . . . 6  |-  .+  =  ( +g  `  G )
31, 2mndcl 14622 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
433expb 1154 . . . 4  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
54adantlr 696 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  .+  y
)  e.  B )
61, 2mndass 14623 . . . 4  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
76adantlr 696 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
8 simpr2 964 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  N  e.  NN )
9 nnuz 10453 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
108, 9syl6eleq 2477 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  N  e.  ( ZZ>= `  1 )
)
11 simpr1 963 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  M  e.  NN )
1211nnzd 10306 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  M  e.  ZZ )
13 eluzadd 10446 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
1 )  /\  M  e.  ZZ )  ->  ( N  +  M )  e.  ( ZZ>= `  ( 1  +  M ) ) )
1410, 12, 13syl2anc 643 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( N  +  M )  e.  (
ZZ>= `  ( 1  +  M ) ) )
1511nncnd 9948 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  M  e.  CC )
168nncnd 9948 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  N  e.  CC )
1715, 16addcomd 9200 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( M  +  N )  =  ( N  +  M ) )
18 ax-1cn 8981 . . . . . 6  |-  1  e.  CC
19 addcom 9184 . . . . . 6  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( M  +  1 )  =  ( 1  +  M ) )
2015, 18, 19sylancl 644 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( M  +  1 )  =  ( 1  +  M
) )
2120fveq2d 5672 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( 1  +  M ) ) )
2214, 17, 213eltr4d 2468 . . 3  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( M  +  N )  e.  (
ZZ>= `  ( M  + 
1 ) ) )
2311, 9syl6eleq 2477 . . 3  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  M  e.  ( ZZ>= `  1 )
)
24 simpr3 965 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  X  e.  B )
25 elfznn 11012 . . . . 5  |-  ( x  e.  ( 1 ... ( M  +  N
) )  ->  x  e.  NN )
26 fvconst2g 5884 . . . . 5  |-  ( ( X  e.  B  /\  x  e.  NN )  ->  ( ( NN  X.  { X } ) `  x )  =  X )
2724, 25, 26syl2an 464 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... ( M  +  N )
) )  ->  (
( NN  X.  { X } ) `  x
)  =  X )
2824adantr 452 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... ( M  +  N )
) )  ->  X  e.  B )
2927, 28eqeltrd 2461 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... ( M  +  N )
) )  ->  (
( NN  X.  { X } ) `  x
)  e.  B )
305, 7, 22, 23, 29seqsplit 11283 . 2  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) )  =  ( (  seq  1 ( 
.+  ,  ( NN 
X.  { X }
) ) `  M
)  .+  (  seq  ( M  +  1
) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) ) )
31 nnaddcl 9954 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
3211, 8, 31syl2anc 643 . . 3  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( M  +  N )  e.  NN )
33 mulgnndir.t . . . 4  |-  .x.  =  (.g
`  G )
34 eqid 2387 . . . 4  |-  seq  1
(  .+  ,  ( NN  X.  { X }
) )  =  seq  1 (  .+  , 
( NN  X.  { X } ) )
351, 2, 33, 34mulgnn 14823 . . 3  |-  ( ( ( M  +  N
)  e.  NN  /\  X  e.  B )  ->  ( ( M  +  N )  .x.  X
)  =  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
3632, 24, 35syl2anc 643 . 2  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  (  seq  1 (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) ) )
371, 2, 33, 34mulgnn 14823 . . . 4  |-  ( ( M  e.  NN  /\  X  e.  B )  ->  ( M  .x.  X
)  =  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
3811, 24, 37syl2anc 643 . . 3  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( M  .x.  X )  =  (  seq  1 (  .+  ,  ( NN  X.  { X } ) ) `
 M ) )
39 elfznn 11012 . . . . . . 7  |-  ( x  e.  ( 1 ... N )  ->  x  e.  NN )
4024, 39, 26syl2an 464 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... N
) )  ->  (
( NN  X.  { X } ) `  x
)  =  X )
4124adantr 452 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... N
) )  ->  X  e.  B )
42 nnaddcl 9954 . . . . . . . 8  |-  ( ( x  e.  NN  /\  M  e.  NN )  ->  ( x  +  M
)  e.  NN )
4339, 11, 42syl2anr 465 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... N
) )  ->  (
x  +  M )  e.  NN )
44 fvconst2g 5884 . . . . . . 7  |-  ( ( X  e.  B  /\  ( x  +  M
)  e.  NN )  ->  ( ( NN 
X.  { X }
) `  ( x  +  M ) )  =  X )
4541, 43, 44syl2anc 643 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... N
) )  ->  (
( NN  X.  { X } ) `  (
x  +  M ) )  =  X )
4640, 45eqtr4d 2422 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... N
) )  ->  (
( NN  X.  { X } ) `  x
)  =  ( ( NN  X.  { X } ) `  (
x  +  M ) ) )
4710, 12, 46seqshft2 11276 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  N )  =  (  seq  ( 1  +  M ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( N  +  M ) ) )
481, 2, 33, 34mulgnn 14823 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
498, 24, 48syl2anc 643 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( N  .x.  X )  =  (  seq  1 (  .+  ,  ( NN  X.  { X } ) ) `
 N ) )
5020seqeq1d 11256 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  seq  ( M  +  1 ) ( 
.+  ,  ( NN 
X.  { X }
) )  =  seq  ( 1  +  M
) (  .+  , 
( NN  X.  { X } ) ) )
5150, 17fveq12d 5674 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  (  seq  ( M  +  1
) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) )  =  (  seq  ( 1  +  M ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( N  +  M ) ) )
5247, 49, 513eqtr4d 2429 . . 3  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( N  .x.  X )  =  (  seq  ( M  + 
1 ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) ) )
5338, 52oveq12d 6038 . 2  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ( M  .x.  X )  .+  ( N  .x.  X ) )  =  ( (  seq  1 (  .+  ,  ( NN  X.  { X } ) ) `
 M )  .+  (  seq  ( M  + 
1 ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) ) ) )
5430, 36, 533eqtr4d 2429 1  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   {csn 3757    X. cxp 4816   ` cfv 5394  (class class class)co 6020   CCcc 8921   1c1 8924    + caddc 8926   NNcn 9932   ZZcz 10214   ZZ>=cuz 10420   ...cfz 10975    seq cseq 11250   Basecbs 13396   +g cplusg 13456   Mndcmnd 14611  .gcmg 14616
This theorem is referenced by:  mulgnn0dir  14840  mulgnnass  14845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-n0 10154  df-z 10215  df-uz 10421  df-fz 10976  df-seq 11251  df-mnd 14617  df-mulg 14742
  Copyright terms: Public domain W3C validator