MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnndir Structured version   Unicode version

Theorem mulgnndir 14904
Description: Sum of group multiples, for positive multiples. TODO: This can be generalized to a semigroup if/when we introduce them. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b  |-  B  =  ( Base `  G
)
mulgnndir.t  |-  .x.  =  (.g
`  G )
mulgnndir.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
mulgnndir  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )

Proof of Theorem mulgnndir
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulgnndir.b . . . . . 6  |-  B  =  ( Base `  G
)
2 mulgnndir.p . . . . . 6  |-  .+  =  ( +g  `  G )
31, 2mndcl 14687 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
433expb 1154 . . . 4  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
54adantlr 696 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  .+  y
)  e.  B )
61, 2mndass 14688 . . . 4  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
76adantlr 696 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
8 simpr2 964 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  N  e.  NN )
9 nnuz 10513 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
108, 9syl6eleq 2525 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  N  e.  ( ZZ>= `  1 )
)
11 simpr1 963 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  M  e.  NN )
1211nnzd 10366 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  M  e.  ZZ )
13 eluzadd 10506 . . . . 5  |-  ( ( N  e.  ( ZZ>= ` 
1 )  /\  M  e.  ZZ )  ->  ( N  +  M )  e.  ( ZZ>= `  ( 1  +  M ) ) )
1410, 12, 13syl2anc 643 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( N  +  M )  e.  (
ZZ>= `  ( 1  +  M ) ) )
1511nncnd 10008 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  M  e.  CC )
168nncnd 10008 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  N  e.  CC )
1715, 16addcomd 9260 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( M  +  N )  =  ( N  +  M ) )
18 ax-1cn 9040 . . . . . 6  |-  1  e.  CC
19 addcom 9244 . . . . . 6  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( M  +  1 )  =  ( 1  +  M ) )
2015, 18, 19sylancl 644 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( M  +  1 )  =  ( 1  +  M
) )
2120fveq2d 5724 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ZZ>= `  ( M  +  1
) )  =  (
ZZ>= `  ( 1  +  M ) ) )
2214, 17, 213eltr4d 2516 . . 3  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( M  +  N )  e.  (
ZZ>= `  ( M  + 
1 ) ) )
2311, 9syl6eleq 2525 . . 3  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  M  e.  ( ZZ>= `  1 )
)
24 simpr3 965 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  X  e.  B )
25 elfznn 11072 . . . . 5  |-  ( x  e.  ( 1 ... ( M  +  N
) )  ->  x  e.  NN )
26 fvconst2g 5937 . . . . 5  |-  ( ( X  e.  B  /\  x  e.  NN )  ->  ( ( NN  X.  { X } ) `  x )  =  X )
2724, 25, 26syl2an 464 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... ( M  +  N )
) )  ->  (
( NN  X.  { X } ) `  x
)  =  X )
2824adantr 452 . . . 4  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... ( M  +  N )
) )  ->  X  e.  B )
2927, 28eqeltrd 2509 . . 3  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... ( M  +  N )
) )  ->  (
( NN  X.  { X } ) `  x
)  e.  B )
305, 7, 22, 23, 29seqsplit 11348 . 2  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) )  =  ( (  seq  1 ( 
.+  ,  ( NN 
X.  { X }
) ) `  M
)  .+  (  seq  ( M  +  1
) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) ) )
31 nnaddcl 10014 . . . 4  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  +  N
)  e.  NN )
3211, 8, 31syl2anc 643 . . 3  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( M  +  N )  e.  NN )
33 mulgnndir.t . . . 4  |-  .x.  =  (.g
`  G )
34 eqid 2435 . . . 4  |-  seq  1
(  .+  ,  ( NN  X.  { X }
) )  =  seq  1 (  .+  , 
( NN  X.  { X } ) )
351, 2, 33, 34mulgnn 14888 . . 3  |-  ( ( ( M  +  N
)  e.  NN  /\  X  e.  B )  ->  ( ( M  +  N )  .x.  X
)  =  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) ) )
3632, 24, 35syl2anc 643 . 2  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  (  seq  1 (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) ) )
371, 2, 33, 34mulgnn 14888 . . . 4  |-  ( ( M  e.  NN  /\  X  e.  B )  ->  ( M  .x.  X
)  =  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  M ) )
3811, 24, 37syl2anc 643 . . 3  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( M  .x.  X )  =  (  seq  1 (  .+  ,  ( NN  X.  { X } ) ) `
 M ) )
39 elfznn 11072 . . . . . . 7  |-  ( x  e.  ( 1 ... N )  ->  x  e.  NN )
4024, 39, 26syl2an 464 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... N
) )  ->  (
( NN  X.  { X } ) `  x
)  =  X )
4124adantr 452 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... N
) )  ->  X  e.  B )
42 nnaddcl 10014 . . . . . . . 8  |-  ( ( x  e.  NN  /\  M  e.  NN )  ->  ( x  +  M
)  e.  NN )
4339, 11, 42syl2anr 465 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... N
) )  ->  (
x  +  M )  e.  NN )
44 fvconst2g 5937 . . . . . . 7  |-  ( ( X  e.  B  /\  ( x  +  M
)  e.  NN )  ->  ( ( NN 
X.  { X }
) `  ( x  +  M ) )  =  X )
4541, 43, 44syl2anc 643 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... N
) )  ->  (
( NN  X.  { X } ) `  (
x  +  M ) )  =  X )
4640, 45eqtr4d 2470 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  /\  x  e.  ( 1 ... N
) )  ->  (
( NN  X.  { X } ) `  x
)  =  ( ( NN  X.  { X } ) `  (
x  +  M ) ) )
4710, 12, 46seqshft2 11341 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  N )  =  (  seq  ( 1  +  M ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( N  +  M ) ) )
481, 2, 33, 34mulgnn 14888 . . . . 5  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
498, 24, 48syl2anc 643 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( N  .x.  X )  =  (  seq  1 (  .+  ,  ( NN  X.  { X } ) ) `
 N ) )
5020seqeq1d 11321 . . . . 5  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  seq  ( M  +  1 ) ( 
.+  ,  ( NN 
X.  { X }
) )  =  seq  ( 1  +  M
) (  .+  , 
( NN  X.  { X } ) ) )
5150, 17fveq12d 5726 . . . 4  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  (  seq  ( M  +  1
) (  .+  , 
( NN  X.  { X } ) ) `  ( M  +  N
) )  =  (  seq  ( 1  +  M ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( N  +  M ) ) )
5247, 49, 513eqtr4d 2477 . . 3  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( N  .x.  X )  =  (  seq  ( M  + 
1 ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) ) )
5338, 52oveq12d 6091 . 2  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ( M  .x.  X )  .+  ( N  .x.  X ) )  =  ( (  seq  1 (  .+  ,  ( NN  X.  { X } ) ) `
 M )  .+  (  seq  ( M  + 
1 ) (  .+  ,  ( NN  X.  { X } ) ) `
 ( M  +  N ) ) ) )
5430, 36, 533eqtr4d 2477 1  |-  ( ( G  e.  Mnd  /\  ( M  e.  NN  /\  N  e.  NN  /\  X  e.  B )
)  ->  ( ( M  +  N )  .x.  X )  =  ( ( M  .x.  X
)  .+  ( N  .x.  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   {csn 3806    X. cxp 4868   ` cfv 5446  (class class class)co 6073   CCcc 8980   1c1 8983    + caddc 8985   NNcn 9992   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035    seq cseq 11315   Basecbs 13461   +g cplusg 13521   Mndcmnd 14676  .gcmg 14681
This theorem is referenced by:  mulgnn0dir  14905  mulgnnass  14910
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-seq 11316  df-mnd 14682  df-mulg 14807
  Copyright terms: Public domain W3C validator