MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnnsubcl Structured version   Unicode version

Theorem mulgnnsubcl 14894
Description: Closure of the group multiple (exponentiation) operation in a subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b  |-  B  =  ( Base `  G
)
mulgnnsubcl.t  |-  .x.  =  (.g
`  G )
mulgnnsubcl.p  |-  .+  =  ( +g  `  G )
mulgnnsubcl.g  |-  ( ph  ->  G  e.  V )
mulgnnsubcl.s  |-  ( ph  ->  S  C_  B )
mulgnnsubcl.c  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
Assertion
Ref Expression
mulgnnsubcl  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Distinct variable groups:    x, y,  .+    x, B, y    x, G, y    x, N, y   
x, S, y    ph, x, y    x,  .x.    x, X, y
Allowed substitution hints:    .x. ( y)    V( x, y)

Proof of Theorem mulgnnsubcl
StepHypRef Expression
1 simp2 958 . . 3  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  N  e.  NN )
2 mulgnnsubcl.s . . . . 5  |-  ( ph  ->  S  C_  B )
323ad2ant1 978 . . . 4  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  S  C_  B
)
4 simp3 959 . . . 4  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  X  e.  S )
53, 4sseldd 3341 . . 3  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  X  e.  B )
6 mulgnnsubcl.b . . . 4  |-  B  =  ( Base `  G
)
7 mulgnnsubcl.p . . . 4  |-  .+  =  ( +g  `  G )
8 mulgnnsubcl.t . . . 4  |-  .x.  =  (.g
`  G )
9 eqid 2435 . . . 4  |-  seq  1
(  .+  ,  ( NN  X.  { X }
) )  =  seq  1 (  .+  , 
( NN  X.  { X } ) )
106, 7, 8, 9mulgnn 14888 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
111, 5, 10syl2anc 643 . 2  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  ( N  .x.  X )  =  (  seq  1 (  .+  ,  ( NN  X.  { X } ) ) `
 N ) )
12 nnuz 10513 . . . 4  |-  NN  =  ( ZZ>= `  1 )
131, 12syl6eleq 2525 . . 3  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  N  e.  ( ZZ>= `  1 )
)
14 elfznn 11072 . . . . 5  |-  ( x  e.  ( 1 ... N )  ->  x  e.  NN )
15 fvconst2g 5937 . . . . 5  |-  ( ( X  e.  S  /\  x  e.  NN )  ->  ( ( NN  X.  { X } ) `  x )  =  X )
164, 14, 15syl2an 464 . . . 4  |-  ( ( ( ph  /\  N  e.  NN  /\  X  e.  S )  /\  x  e.  ( 1 ... N
) )  ->  (
( NN  X.  { X } ) `  x
)  =  X )
17 simpl3 962 . . . 4  |-  ( ( ( ph  /\  N  e.  NN  /\  X  e.  S )  /\  x  e.  ( 1 ... N
) )  ->  X  e.  S )
1816, 17eqeltrd 2509 . . 3  |-  ( ( ( ph  /\  N  e.  NN  /\  X  e.  S )  /\  x  e.  ( 1 ... N
) )  ->  (
( NN  X.  { X } ) `  x
)  e.  S )
19 mulgnnsubcl.c . . . . 5  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
20193expb 1154 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
21203ad2antl1 1119 . . 3  |-  ( ( ( ph  /\  N  e.  NN  /\  X  e.  S )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  .+  y )  e.  S
)
2213, 18, 21seqcl 11335 . 2  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  N )  e.  S
)
2311, 22eqeltrd 2509 1  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    C_ wss 3312   {csn 3806    X. cxp 4868   ` cfv 5446  (class class class)co 6073   1c1 8983   NNcn 9992   ZZ>=cuz 10480   ...cfz 11035    seq cseq 11315   Basecbs 13461   +g cplusg 13521  .gcmg 14681
This theorem is referenced by:  mulgnn0subcl  14895  mulgsubcl  14896  mulgnncl  14897  xrsmulgzz  24192
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-seq 11316  df-mulg 14807
  Copyright terms: Public domain W3C validator