MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnnsubcl Unicode version

Theorem mulgnnsubcl 14829
Description: Closure of the group multiple (exponentiation) operation in a subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mulgnnsubcl.b  |-  B  =  ( Base `  G
)
mulgnnsubcl.t  |-  .x.  =  (.g
`  G )
mulgnnsubcl.p  |-  .+  =  ( +g  `  G )
mulgnnsubcl.g  |-  ( ph  ->  G  e.  V )
mulgnnsubcl.s  |-  ( ph  ->  S  C_  B )
mulgnnsubcl.c  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
Assertion
Ref Expression
mulgnnsubcl  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Distinct variable groups:    x, y,  .+    x, B, y    x, G, y    x, N, y   
x, S, y    ph, x, y    x,  .x.    x, X, y
Allowed substitution hints:    .x. ( y)    V( x, y)

Proof of Theorem mulgnnsubcl
StepHypRef Expression
1 simp2 958 . . 3  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  N  e.  NN )
2 mulgnnsubcl.s . . . . 5  |-  ( ph  ->  S  C_  B )
323ad2ant1 978 . . . 4  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  S  C_  B
)
4 simp3 959 . . . 4  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  X  e.  S )
53, 4sseldd 3292 . . 3  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  X  e.  B )
6 mulgnnsubcl.b . . . 4  |-  B  =  ( Base `  G
)
7 mulgnnsubcl.p . . . 4  |-  .+  =  ( +g  `  G )
8 mulgnnsubcl.t . . . 4  |-  .x.  =  (.g
`  G )
9 eqid 2387 . . . 4  |-  seq  1
(  .+  ,  ( NN  X.  { X }
) )  =  seq  1 (  .+  , 
( NN  X.  { X } ) )
106, 7, 8, 9mulgnn 14823 . . 3  |-  ( ( N  e.  NN  /\  X  e.  B )  ->  ( N  .x.  X
)  =  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  N ) )
111, 5, 10syl2anc 643 . 2  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  ( N  .x.  X )  =  (  seq  1 (  .+  ,  ( NN  X.  { X } ) ) `
 N ) )
12 nnuz 10453 . . . 4  |-  NN  =  ( ZZ>= `  1 )
131, 12syl6eleq 2477 . . 3  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  N  e.  ( ZZ>= `  1 )
)
14 elfznn 11012 . . . . 5  |-  ( x  e.  ( 1 ... N )  ->  x  e.  NN )
15 fvconst2g 5884 . . . . 5  |-  ( ( X  e.  S  /\  x  e.  NN )  ->  ( ( NN  X.  { X } ) `  x )  =  X )
164, 14, 15syl2an 464 . . . 4  |-  ( ( ( ph  /\  N  e.  NN  /\  X  e.  S )  /\  x  e.  ( 1 ... N
) )  ->  (
( NN  X.  { X } ) `  x
)  =  X )
17 simpl3 962 . . . 4  |-  ( ( ( ph  /\  N  e.  NN  /\  X  e.  S )  /\  x  e.  ( 1 ... N
) )  ->  X  e.  S )
1816, 17eqeltrd 2461 . . 3  |-  ( ( ( ph  /\  N  e.  NN  /\  X  e.  S )  /\  x  e.  ( 1 ... N
) )  ->  (
( NN  X.  { X } ) `  x
)  e.  S )
19 mulgnnsubcl.c . . . . 5  |-  ( (
ph  /\  x  e.  S  /\  y  e.  S
)  ->  ( x  .+  y )  e.  S
)
20193expb 1154 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
21203ad2antl1 1119 . . 3  |-  ( ( ( ph  /\  N  e.  NN  /\  X  e.  S )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  .+  y )  e.  S
)
2213, 18, 21seqcl 11270 . 2  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  (  seq  1 (  .+  , 
( NN  X.  { X } ) ) `  N )  e.  S
)
2311, 22eqeltrd 2461 1  |-  ( (
ph  /\  N  e.  NN  /\  X  e.  S
)  ->  ( N  .x.  X )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    C_ wss 3263   {csn 3757    X. cxp 4816   ` cfv 5394  (class class class)co 6020   1c1 8924   NNcn 9932   ZZ>=cuz 10420   ...cfz 10975    seq cseq 11250   Basecbs 13396   +g cplusg 13456  .gcmg 14616
This theorem is referenced by:  mulgnn0subcl  14830  mulgsubcl  14831  mulgnncl  14832  xrsmulgzz  24033
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-n0 10154  df-z 10215  df-uz 10421  df-fz 10976  df-seq 11251  df-mulg 14742
  Copyright terms: Public domain W3C validator