MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgrhm Unicode version

Theorem mulgrhm 16460
Description: The powers of the element  1 give a ring homomorphism from  ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
mulgghm2.1  |-  Z  =  (flds  ZZ )
mulgghm2.2  |-  .x.  =  (.g
`  R )
mulgghm2.3  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
mulgrhm.4  |-  .1.  =  ( 1r `  R )
Assertion
Ref Expression
mulgrhm  |-  ( R  e.  Ring  ->  F  e.  ( Z RingHom  R )
)
Distinct variable groups:    R, n    .x. ,
n    n, Z    .1. , n
Allowed substitution hint:    F( n)

Proof of Theorem mulgrhm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zsubrg 16425 . . 3  |-  ZZ  e.  (SubRing ` fld )
2 mulgghm2.1 . . . 4  |-  Z  =  (flds  ZZ )
32subrgbas 15554 . . 3  |-  ( ZZ  e.  (SubRing ` fld )  ->  ZZ  =  ( Base `  Z )
)
41, 3ax-mp 8 . 2  |-  ZZ  =  ( Base `  Z )
5 cnfld1 16399 . . . 4  |-  1  =  ( 1r ` fld )
62, 5subrg1 15555 . . 3  |-  ( ZZ  e.  (SubRing ` fld )  ->  1  =  ( 1r `  Z
) )
71, 6ax-mp 8 . 2  |-  1  =  ( 1r `  Z )
8 mulgrhm.4 . 2  |-  .1.  =  ( 1r `  R )
9 cnfldmul 16385 . . . 4  |-  x.  =  ( .r ` fld )
102, 9ressmulr 13261 . . 3  |-  ( ZZ  e.  (SubRing ` fld )  ->  x.  =  ( .r `  Z ) )
111, 10ax-mp 8 . 2  |-  x.  =  ( .r `  Z )
12 eqid 2283 . 2  |-  ( .r
`  R )  =  ( .r `  R
)
132subrgrng 15548 . . 3  |-  ( ZZ  e.  (SubRing ` fld )  ->  Z  e. 
Ring )
141, 13mp1i 11 . 2  |-  ( R  e.  Ring  ->  Z  e. 
Ring )
15 id 19 . 2  |-  ( R  e.  Ring  ->  R  e. 
Ring )
16 1z 10053 . . . 4  |-  1  e.  ZZ
17 oveq1 5865 . . . . 5  |-  ( n  =  1  ->  (
n  .x.  .1.  )  =  ( 1  .x. 
.1.  ) )
18 mulgghm2.3 . . . . 5  |-  F  =  ( n  e.  ZZ  |->  ( n  .x.  .1.  )
)
19 ovex 5883 . . . . 5  |-  ( 1 
.x.  .1.  )  e.  _V
2017, 18, 19fvmpt 5602 . . . 4  |-  ( 1  e.  ZZ  ->  ( F `  1 )  =  ( 1  .x. 
.1.  ) )
2116, 20ax-mp 8 . . 3  |-  ( F `
 1 )  =  ( 1  .x.  .1.  )
22 eqid 2283 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
2322, 8rngidcl 15361 . . . 4  |-  ( R  e.  Ring  ->  .1.  e.  ( Base `  R )
)
24 mulgghm2.2 . . . . 5  |-  .x.  =  (.g
`  R )
2522, 24mulg1 14574 . . . 4  |-  (  .1. 
e.  ( Base `  R
)  ->  ( 1 
.x.  .1.  )  =  .1.  )
2623, 25syl 15 . . 3  |-  ( R  e.  Ring  ->  ( 1 
.x.  .1.  )  =  .1.  )
2721, 26syl5eq 2327 . 2  |-  ( R  e.  Ring  ->  ( F `
 1 )  =  .1.  )
28 rnggrp 15346 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2928adantr 451 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  R  e.  Grp )
30 simprr 733 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  ZZ )
3123adantr 451 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  .1.  e.  ( Base `  R )
)
3222, 24mulgcl 14584 . . . . . . 7  |-  ( ( R  e.  Grp  /\  y  e.  ZZ  /\  .1.  e.  ( Base `  R
) )  ->  (
y  .x.  .1.  )  e.  ( Base `  R
) )
3329, 30, 31, 32syl3anc 1182 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( y  .x.  .1.  )  e.  (
Base `  R )
)
3422, 12, 8rnglidm 15364 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
y  .x.  .1.  )  e.  ( Base `  R
) )  ->  (  .1.  ( .r `  R
) ( y  .x.  .1.  ) )  =  ( y  .x.  .1.  )
)
3533, 34syldan 456 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  (  .1.  ( .r `  R ) ( y  .x.  .1.  ) )  =  ( y  .x.  .1.  )
)
3635oveq2d 5874 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  .x.  (  .1.  ( .r `  R ) ( y  .x.  .1.  )
) )  =  ( x  .x.  ( y 
.x.  .1.  ) )
)
37 simpl 443 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  R  e.  Ring )
38 simprl 732 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  ZZ )
3922, 24, 12mulgass2 15387 . . . . 5  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  .1.  e.  ( Base `  R
)  /\  ( y  .x.  .1.  )  e.  (
Base `  R )
) )  ->  (
( x  .x.  .1.  ) ( .r `  R ) ( y 
.x.  .1.  ) )  =  ( x  .x.  (  .1.  ( .r `  R ) ( y 
.x.  .1.  ) )
) )
4037, 38, 31, 33, 39syl13anc 1184 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  .x.  .1.  )
( .r `  R
) ( y  .x.  .1.  ) )  =  ( x  .x.  (  .1.  ( .r `  R
) ( y  .x.  .1.  ) ) ) )
4122, 24mulgass 14597 . . . . 5  |-  ( ( R  e.  Grp  /\  ( x  e.  ZZ  /\  y  e.  ZZ  /\  .1.  e.  ( Base `  R
) ) )  -> 
( ( x  x.  y )  .x.  .1.  )  =  ( x  .x.  ( y  .x.  .1.  ) ) )
4229, 38, 30, 31, 41syl13anc 1184 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y ) 
.x.  .1.  )  =  ( x  .x.  ( y 
.x.  .1.  ) )
)
4336, 40, 423eqtr4rd 2326 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( (
x  x.  y ) 
.x.  .1.  )  =  ( ( x  .x.  .1.  ) ( .r `  R ) ( y 
.x.  .1.  ) )
)
44 zmulcl 10066 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( x  x.  y
)  e.  ZZ )
4544adantl 452 . . . 4  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  x.  y )  e.  ZZ )
46 oveq1 5865 . . . . 5  |-  ( n  =  ( x  x.  y )  ->  (
n  .x.  .1.  )  =  ( ( x  x.  y )  .x.  .1.  ) )
47 ovex 5883 . . . . 5  |-  ( ( x  x.  y ) 
.x.  .1.  )  e.  _V
4846, 18, 47fvmpt 5602 . . . 4  |-  ( ( x  x.  y )  e.  ZZ  ->  ( F `  ( x  x.  y ) )  =  ( ( x  x.  y )  .x.  .1.  ) )
4945, 48syl 15 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  ( x  x.  y
) )  =  ( ( x  x.  y
)  .x.  .1.  )
)
50 oveq1 5865 . . . . . 6  |-  ( n  =  x  ->  (
n  .x.  .1.  )  =  ( x  .x.  .1.  ) )
51 ovex 5883 . . . . . 6  |-  ( x 
.x.  .1.  )  e.  _V
5250, 18, 51fvmpt 5602 . . . . 5  |-  ( x  e.  ZZ  ->  ( F `  x )  =  ( x  .x.  .1.  ) )
53 oveq1 5865 . . . . . 6  |-  ( n  =  y  ->  (
n  .x.  .1.  )  =  ( y  .x.  .1.  ) )
54 ovex 5883 . . . . . 6  |-  ( y 
.x.  .1.  )  e.  _V
5553, 18, 54fvmpt 5602 . . . . 5  |-  ( y  e.  ZZ  ->  ( F `  y )  =  ( y  .x.  .1.  ) )
5652, 55oveqan12d 5877 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( F `  x ) ( .r
`  R ) ( F `  y ) )  =  ( ( x  .x.  .1.  )
( .r `  R
) ( y  .x.  .1.  ) ) )
5756adantl 452 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( ( F `  x )
( .r `  R
) ( F `  y ) )  =  ( ( x  .x.  .1.  ) ( .r `  R ) ( y 
.x.  .1.  ) )
)
5843, 49, 573eqtr4d 2325 . 2  |-  ( ( R  e.  Ring  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( F `  ( x  x.  y
) )  =  ( ( F `  x
) ( .r `  R ) ( F `
 y ) ) )
592, 24, 18, 22mulgghm2 16459 . . 3  |-  ( ( R  e.  Grp  /\  .1.  e.  ( Base `  R
) )  ->  F  e.  ( Z  GrpHom  R ) )
6028, 23, 59syl2anc 642 . 2  |-  ( R  e.  Ring  ->  F  e.  ( Z  GrpHom  R ) )
614, 7, 8, 11, 12, 14, 15, 27, 58, 60isrhm2d 15506 1  |-  ( R  e.  Ring  ->  F  e.  ( Z RingHom  R )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   1c1 8738    x. cmul 8742   ZZcz 10024   Basecbs 13148   ↾s cress 13149   .rcmulr 13209   Grpcgrp 14362  .gcmg 14366    GrpHom cghm 14680   Ringcrg 15337   1rcur 15339   RingHom crh 15494  SubRingcsubrg 15541  ℂfldccnfld 16377
This theorem is referenced by:  mulgrhm2  16461
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-seq 11047  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-tset 13227  df-ple 13228  df-ds 13230  df-0g 13404  df-mnd 14367  df-mhm 14415  df-grp 14489  df-minusg 14490  df-mulg 14492  df-subg 14618  df-ghm 14681  df-cmn 15091  df-mgp 15326  df-rng 15340  df-cring 15341  df-ur 15342  df-rnghom 15496  df-subrg 15543  df-cnfld 16378
  Copyright terms: Public domain W3C validator