MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt0d Unicode version

Theorem mulgt0d 9058
Description: The product of two positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ltd.2  |-  ( ph  ->  B  e.  RR )
mulgt0d.3  |-  ( ph  ->  0  <  A )
mulgt0d.4  |-  ( ph  ->  0  <  B )
Assertion
Ref Expression
mulgt0d  |-  ( ph  ->  0  <  ( A  x.  B ) )

Proof of Theorem mulgt0d
StepHypRef Expression
1 ltd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 mulgt0d.3 . 2  |-  ( ph  ->  0  <  A )
3 ltd.2 . 2  |-  ( ph  ->  B  e.  RR )
4 mulgt0d.4 . 2  |-  ( ph  ->  0  <  B )
5 mulgt0 8987 . 2  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
0  <  ( A  x.  B ) )
61, 2, 3, 4, 5syl22anc 1183 1  |-  ( ph  ->  0  <  ( A  x.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1710   class class class wbr 4102  (class class class)co 5942   RRcr 8823   0cc0 8824    x. cmul 8829    < clt 8954
This theorem is referenced by:  recgt0  9687  prodgt0  9688  prodge0  9690  ltmul1a  9692  expmulnbnd  11323  itg2monolem3  19205  tangtx  19974  tanregt0  20002  asinsinlem  20292  asinsin  20293  ostth2lem3  20890  xrge0iifhom  23479  itg2addnclem  25492  itg2gt0cn  25495  pell14qrmulcl  26271  rmxypos  26357  jm2.27a  26421  wallispilem4  27140  stirlinglem6  27151
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-i2m1 8892  ax-1ne0 8893  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-mulgt0 8901
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-pnf 8956  df-mnf 8957  df-ltxr 8959
  Copyright terms: Public domain W3C validator