MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt0ii Unicode version

Theorem mulgt0ii 8952
Description: The product of two positive numbers is positive. (Contributed by NM, 18-May-1999.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
lt.2  |-  B  e.  RR
mulgt0i.3  |-  0  <  A
mulgt0i.4  |-  0  <  B
Assertion
Ref Expression
mulgt0ii  |-  0  <  ( A  x.  B
)

Proof of Theorem mulgt0ii
StepHypRef Expression
1 mulgt0i.3 . 2  |-  0  <  A
2 mulgt0i.4 . 2  |-  0  <  B
3 lt.1 . . 3  |-  A  e.  RR
4 lt.2 . . 3  |-  B  e.  RR
53, 4mulgt0i 8951 . 2  |-  ( ( 0  <  A  /\  0  <  B )  -> 
0  <  ( A  x.  B ) )
61, 2, 5mp2an 653 1  |-  0  <  ( A  x.  B
)
Colors of variables: wff set class
Syntax hints:    e. wcel 1684   class class class wbr 4023  (class class class)co 5858   RRcr 8736   0cc0 8737    x. cmul 8742    < clt 8867
This theorem is referenced by:  ef01bndlem  12464  efif1olem2  19905  efif1olem4  19907  ang180lem1  20107  ang180lem2  20108  chebbnd1lem3  20620  chebbnd1  20621
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-i2m1 8805  ax-1ne0 8806  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-ltxr 8872
  Copyright terms: Public domain W3C validator