MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt0sr Unicode version

Theorem mulgt0sr 8743
Description: The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulgt0sr  |-  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B ) )

Proof of Theorem mulgt0sr
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelsr 8709 . . . . 5  |-  <R  C_  ( R.  X.  R. )
21brel 4753 . . . 4  |-  ( 0R 
<R  A  ->  ( 0R  e.  R.  /\  A  e.  R. ) )
32simprd 449 . . 3  |-  ( 0R 
<R  A  ->  A  e. 
R. )
41brel 4753 . . . 4  |-  ( 0R 
<R  B  ->  ( 0R  e.  R.  /\  B  e.  R. ) )
54simprd 449 . . 3  |-  ( 0R 
<R  B  ->  B  e. 
R. )
63, 5anim12i 549 . 2  |-  ( ( 0R  <R  A  /\  0R  <R  B )  -> 
( A  e.  R.  /\  B  e.  R. )
)
7 df-nr 8698 . . 3  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
8 breq2 4043 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( 0R  <R  [ <. x ,  y >. ]  ~R  <->  0R 
<R  A ) )
98anbi1d 685 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( 0R  <R  [
<. x ,  y >. ]  ~R  /\  0R  <R  [
<. z ,  w >. ]  ~R  )  <->  ( 0R  <R  A  /\  0R  <R  [
<. z ,  w >. ]  ~R  ) ) )
10 oveq1 5881 . . . . 5  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  =  ( A  .R  [ <. z ,  w >. ]  ~R  ) )
1110breq2d 4051 . . . 4  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( 0R  <R  ( [ <. x ,  y
>. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  <->  0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  ) ) )
129, 11imbi12d 311 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( ( 0R 
<R  [ <. x ,  y
>. ]  ~R  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  ->  0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  ) )  <-> 
( ( 0R  <R  A  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  ->  0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  )
) ) )
13 breq2 4043 . . . . 5  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( 0R  <R  [ <. z ,  w >. ]  ~R  <->  0R 
<R  B ) )
1413anbi2d 684 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( 0R  <R  A  /\  0R  <R  [ <. z ,  w >. ]  ~R  ) 
<->  ( 0R  <R  A  /\  0R  <R  B ) ) )
15 oveq2 5882 . . . . 5  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( A  .R  [ <. z ,  w >. ]  ~R  )  =  ( A  .R  B ) )
1615breq2d 4051 . . . 4  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( 0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  )  <->  0R 
<R  ( A  .R  B
) ) )
1714, 16imbi12d 311 . . 3  |-  ( [
<. z ,  w >. ]  ~R  =  B  -> 
( ( ( 0R 
<R  A  /\  0R  <R  [
<. z ,  w >. ]  ~R  )  ->  0R  <R  ( A  .R  [ <. z ,  w >. ]  ~R  ) )  <->  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B
) ) ) )
18 gt0srpr 8716 . . . . 5  |-  ( 0R 
<R  [ <. x ,  y
>. ]  ~R  <->  y  <P  x )
19 gt0srpr 8716 . . . . 5  |-  ( 0R 
<R  [ <. z ,  w >. ]  ~R  <->  w  <P  z )
2018, 19anbi12i 678 . . . 4  |-  ( ( 0R  <R  [ <. x ,  y >. ]  ~R  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  <->  ( y  <P  x  /\  w  <P  z ) )
21 simprr 733 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  w  e.  P. )
22 mulclpr 8660 . . . . . . . 8  |-  ( ( x  e.  P.  /\  z  e.  P. )  ->  ( x  .P.  z
)  e.  P. )
23 mulclpr 8660 . . . . . . . 8  |-  ( ( y  e.  P.  /\  w  e.  P. )  ->  ( y  .P.  w
)  e.  P. )
24 addclpr 8658 . . . . . . . 8  |-  ( ( ( x  .P.  z
)  e.  P.  /\  ( y  .P.  w
)  e.  P. )  ->  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )
2522, 23, 24syl2an 463 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  z  e.  P. )  /\  ( y  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
2625an4s 799 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )
27 ltexpri 8683 . . . . . . . . 9  |-  ( y 
<P  x  ->  E. v  e.  P.  ( y  +P.  v )  =  x )
28 ltexpri 8683 . . . . . . . . 9  |-  ( w 
<P  z  ->  E. u  e.  P.  ( w  +P.  u )  =  z )
29 mulclpr 8660 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  P.  /\  w  e.  P. )  ->  ( v  .P.  w
)  e.  P. )
30 oveq12 5883 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( y  +P.  v )  .P.  (
w  +P.  u )
)  =  ( x  .P.  z ) )
3130oveq1d 5889 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( ( y  +P.  v )  .P.  ( w  +P.  u
) )  +P.  (
( y  .P.  w
)  +P.  ( v  .P.  w ) ) )  =  ( ( x  .P.  z )  +P.  ( ( y  .P.  w )  +P.  (
v  .P.  w )
) ) )
32 distrpr 8668 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  .P.  ( w  +P.  u ) )  =  ( ( y  .P.  w )  +P.  (
y  .P.  u )
)
33 oveq2 5882 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( w  +P.  u )  =  z  ->  (
y  .P.  ( w  +P.  u ) )  =  ( y  .P.  z
) )
3432, 33syl5eqr 2342 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( w  +P.  u )  =  z  ->  (
( y  .P.  w
)  +P.  ( y  .P.  u ) )  =  ( y  .P.  z
) )
3534oveq1d 5889 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( w  +P.  u )  =  z  ->  (
( ( y  .P.  w )  +P.  (
y  .P.  u )
)  +P.  ( (
v  .P.  w )  +P.  ( v  .P.  u
) ) )  =  ( ( y  .P.  z )  +P.  (
( v  .P.  w
)  +P.  ( v  .P.  u ) ) ) )
36 vex 2804 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  y  e. 
_V
37 vex 2804 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  v  e. 
_V
38 vex 2804 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  w  e. 
_V
39 mulcompr 8663 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  .P.  g )  =  ( g  .P.  f
)
40 distrpr 8668 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f  .P.  ( g  +P.  h ) )  =  ( ( f  .P.  g )  +P.  (
f  .P.  h )
)
4136, 37, 38, 39, 40caovdir 6070 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  +P.  v )  .P.  w )  =  ( ( y  .P.  w )  +P.  (
v  .P.  w )
)
42 vex 2804 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  u  e. 
_V
4336, 37, 42, 39, 40caovdir 6070 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( y  +P.  v )  .P.  u )  =  ( ( y  .P.  u )  +P.  (
v  .P.  u )
)
4441, 43oveq12i 5886 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( y  +P.  v
)  .P.  w )  +P.  ( ( y  +P.  v )  .P.  u
) )  =  ( ( ( y  .P.  w )  +P.  (
v  .P.  w )
)  +P.  ( (
y  .P.  u )  +P.  ( v  .P.  u
) ) )
45 distrpr 8668 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  +P.  v )  .P.  ( w  +P.  u ) )  =  ( ( ( y  +P.  v )  .P.  w )  +P.  (
( y  +P.  v
)  .P.  u )
)
46 ovex 5899 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  .P.  w )  e. 
_V
47 ovex 5899 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  .P.  u )  e. 
_V
48 ovex 5899 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  .P.  w )  e. 
_V
49 addcompr 8661 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f  +P.  g )  =  ( g  +P.  f
)
50 addasspr 8662 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f  +P.  g )  +P.  h )  =  ( f  +P.  (
g  +P.  h )
)
51 ovex 5899 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( v  .P.  u )  e. 
_V
5246, 47, 48, 49, 50, 51caov4 6067 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( y  .P.  w
)  +P.  ( y  .P.  u ) )  +P.  ( ( v  .P.  w )  +P.  (
v  .P.  u )
) )  =  ( ( ( y  .P.  w )  +P.  (
v  .P.  w )
)  +P.  ( (
y  .P.  u )  +P.  ( v  .P.  u
) ) )
5344, 45, 523eqtr4i 2326 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  +P.  v )  .P.  ( w  +P.  u ) )  =  ( ( ( y  .P.  w )  +P.  ( y  .P.  u
) )  +P.  (
( v  .P.  w
)  +P.  ( v  .P.  u ) ) )
54 ovex 5899 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  .P.  z )  e. 
_V
5548, 54, 51, 49, 50caov12 6064 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( v  .P.  w )  +P.  ( ( y  .P.  z )  +P.  ( v  .P.  u
) ) )  =  ( ( y  .P.  z )  +P.  (
( v  .P.  w
)  +P.  ( v  .P.  u ) ) )
5635, 53, 553eqtr4g 2353 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( w  +P.  u )  =  z  ->  (
( y  +P.  v
)  .P.  ( w  +P.  u ) )  =  ( ( v  .P.  w )  +P.  (
( y  .P.  z
)  +P.  ( v  .P.  u ) ) ) )
57 oveq1 5881 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  +P.  v )  =  x  ->  (
( y  +P.  v
)  .P.  w )  =  ( x  .P.  w ) )
5841, 57syl5eqr 2342 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  +P.  v )  =  x  ->  (
( y  .P.  w
)  +P.  ( v  .P.  w ) )  =  ( x  .P.  w
) )
5956, 58oveqan12rd 5894 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( ( y  +P.  v )  .P.  ( w  +P.  u
) )  +P.  (
( y  .P.  w
)  +P.  ( v  .P.  w ) ) )  =  ( ( ( v  .P.  w )  +P.  ( ( y  .P.  z )  +P.  ( v  .P.  u
) ) )  +P.  ( x  .P.  w
) ) )
6031, 59eqtr3d 2330 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( x  .P.  z )  +P.  (
( y  .P.  w
)  +P.  ( v  .P.  w ) ) )  =  ( ( ( v  .P.  w )  +P.  ( ( y  .P.  z )  +P.  ( v  .P.  u
) ) )  +P.  ( x  .P.  w
) ) )
61 addasspr 8662 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  +P.  ( v  .P.  w
) )  =  ( ( x  .P.  z
)  +P.  ( (
y  .P.  w )  +P.  ( v  .P.  w
) ) )
62 addcompr 8661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  +P.  ( v  .P.  w
) )  =  ( ( v  .P.  w
)  +P.  ( (
x  .P.  z )  +P.  ( y  .P.  w
) ) )
6361, 62eqtr3i 2318 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  .P.  z )  +P.  ( ( y  .P.  w )  +P.  ( v  .P.  w
) ) )  =  ( ( v  .P.  w )  +P.  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) )
64 addasspr 8662 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( v  .P.  w
)  +P.  ( x  .P.  w ) )  +P.  ( ( y  .P.  z )  +P.  (
v  .P.  u )
) )  =  ( ( v  .P.  w
)  +P.  ( (
x  .P.  w )  +P.  ( ( y  .P.  z )  +P.  (
v  .P.  u )
) ) )
65 ovex 5899 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  .P.  z )  +P.  ( v  .P.  u ) )  e. 
_V
66 ovex 5899 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  .P.  w )  e. 
_V
6748, 65, 66, 49, 50caov32 6063 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( v  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )  +P.  ( x  .P.  w
) )  =  ( ( ( v  .P.  w )  +P.  (
x  .P.  w )
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )
68 addasspr 8662 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) )  =  ( ( x  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )
6968oveq2i 5885 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( v  .P.  w )  +P.  ( ( ( x  .P.  w )  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) )  =  ( ( v  .P.  w )  +P.  (
( x  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) ) )
7064, 67, 693eqtr4i 2326 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( v  .P.  w
)  +P.  ( (
y  .P.  z )  +P.  ( v  .P.  u
) ) )  +P.  ( x  .P.  w
) )  =  ( ( v  .P.  w
)  +P.  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) )
7160, 63, 703eqtr3g 2351 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( y  +P.  v
)  =  x  /\  ( w  +P.  u )  =  z )  -> 
( ( v  .P.  w )  +P.  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) )  =  ( ( v  .P.  w )  +P.  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
) ) )
72 addcanpr 8686 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( v  .P.  w
)  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( ( v  .P.  w )  +P.  ( ( x  .P.  z )  +P.  (
y  .P.  w )
) )  =  ( ( v  .P.  w
)  +P.  ( (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) )  -> 
( ( x  .P.  z )  +P.  (
y  .P.  w )
)  =  ( ( ( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) ) ) )
7371, 72syl5 28 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( v  .P.  w
)  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( ( y  +P.  v )  =  x  /\  ( w  +P.  u )  =  z )  ->  (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  =  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
) ) )
74 eqcom 2298 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  =  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
)  <->  ( ( ( x  .P.  w )  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) )  =  ( ( x  .P.  z
)  +P.  ( y  .P.  w ) ) )
75 ltaddpr2 8675 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P.  ->  ( ( ( ( x  .P.  w
)  +P.  ( y  .P.  z ) )  +P.  ( v  .P.  u
) )  =  ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  -> 
( ( x  .P.  w )  +P.  (
y  .P.  z )
)  <P  ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ) )
7674, 75syl5bi 208 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P.  ->  ( ( ( x  .P.  z )  +P.  ( y  .P.  w ) )  =  ( ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  +P.  (
v  .P.  u )
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) )
7776adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( v  .P.  w
)  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( ( x  .P.  z )  +P.  ( y  .P.  w
) )  =  ( ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  +P.  ( v  .P.  u ) )  -> 
( ( x  .P.  w )  +P.  (
y  .P.  z )
)  <P  ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ) )
7873, 77syld 40 . . . . . . . . . . . . . . . . 17  |-  ( ( ( v  .P.  w
)  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( ( y  +P.  v )  =  x  /\  ( w  +P.  u )  =  z )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) )
7929, 78sylan 457 . . . . . . . . . . . . . . . 16  |-  ( ( ( v  e.  P.  /\  w  e.  P. )  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( ( y  +P.  v )  =  x  /\  ( w  +P.  u )  =  z )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) )
8079a1d 22 . . . . . . . . . . . . . . 15  |-  ( ( ( v  e.  P.  /\  w  e.  P. )  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( u  e.  P.  ->  ( ( ( y  +P.  v )  =  x  /\  ( w  +P.  u )  =  z )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) ) )
8180exp4a 589 . . . . . . . . . . . . . 14  |-  ( ( ( v  e.  P.  /\  w  e.  P. )  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( u  e.  P.  ->  ( ( y  +P.  v )  =  x  ->  ( ( w  +P.  u )  =  z  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) ) ) )
8281com34 77 . . . . . . . . . . . . 13  |-  ( ( ( v  e.  P.  /\  w  e.  P. )  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( u  e.  P.  ->  ( ( w  +P.  u )  =  z  ->  ( ( y  +P.  v )  =  x  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) ) ) )
8382rexlimdv 2679 . . . . . . . . . . . 12  |-  ( ( ( v  e.  P.  /\  w  e.  P. )  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( E. u  e. 
P.  ( w  +P.  u )  =  z  ->  ( ( y  +P.  v )  =  x  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) ) )
8483expl 601 . . . . . . . . . . 11  |-  ( v  e.  P.  ->  (
( w  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( E. u  e. 
P.  ( w  +P.  u )  =  z  ->  ( ( y  +P.  v )  =  x  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) ) ) )
8584com24 81 . . . . . . . . . 10  |-  ( v  e.  P.  ->  (
( y  +P.  v
)  =  x  -> 
( E. u  e. 
P.  ( w  +P.  u )  =  z  ->  ( ( w  e.  P.  /\  (
( x  .P.  z
)  +P.  ( y  .P.  w ) )  e. 
P. )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) ) ) )
8685rexlimiv 2674 . . . . . . . . 9  |-  ( E. v  e.  P.  (
y  +P.  v )  =  x  ->  ( E. u  e.  P.  (
w  +P.  u )  =  z  ->  ( ( w  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  <P  ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ) ) )
8727, 28, 86syl2im 34 . . . . . . . 8  |-  ( y 
<P  x  ->  ( w 
<P  z  ->  ( ( w  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( x  .P.  w )  +P.  (
y  .P.  z )
)  <P  ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ) ) )
8887imp 418 . . . . . . 7  |-  ( ( y  <P  x  /\  w  <P  z )  -> 
( ( w  e. 
P.  /\  ( (
x  .P.  z )  +P.  ( y  .P.  w
) )  e.  P. )  ->  ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) )
8988com12 27 . . . . . 6  |-  ( ( w  e.  P.  /\  ( ( x  .P.  z )  +P.  (
y  .P.  w )
)  e.  P. )  ->  ( ( y  <P  x  /\  w  <P  z
)  ->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) )
9021, 26, 89syl2anc 642 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
y  <P  x  /\  w  <P  z )  ->  (
( x  .P.  w
)  +P.  ( y  .P.  z ) )  <P 
( ( x  .P.  z )  +P.  (
y  .P.  w )
) ) )
91 mulsrpr 8714 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  )  =  [ <. (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ,  ( ( x  .P.  w )  +P.  (
y  .P.  z )
) >. ]  ~R  )
9291breq2d 4051 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( 0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  <->  0R  <R  [
<. ( ( x  .P.  z )  +P.  (
y  .P.  w )
) ,  ( ( x  .P.  w )  +P.  ( y  .P.  z ) ) >. ]  ~R  ) )
93 gt0srpr 8716 . . . . . 6  |-  ( 0R 
<R  [ <. ( ( x  .P.  z )  +P.  ( y  .P.  w
) ) ,  ( ( x  .P.  w
)  +P.  ( y  .P.  z ) ) >. ]  ~R  <->  ( ( x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) )
9492, 93syl6bb 252 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( 0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  )  <->  ( (
x  .P.  w )  +P.  ( y  .P.  z
) )  <P  (
( x  .P.  z
)  +P.  ( y  .P.  w ) ) ) )
9590, 94sylibrd 225 . . . 4  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( (
y  <P  x  /\  w  <P  z )  ->  0R  <R  ( [ <. x ,  y >. ]  ~R  .R 
[ <. z ,  w >. ]  ~R  ) ) )
9620, 95syl5bi 208 . . 3  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( ( 0R  <R  [ <. x ,  y >. ]  ~R  /\  0R  <R  [ <. z ,  w >. ]  ~R  )  ->  0R  <R  ( [ <. x ,  y >. ]  ~R  .R  [ <. z ,  w >. ]  ~R  ) ) )
977, 12, 17, 962ecoptocl 6765 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B ) ) )
986, 97mpcom 32 1  |-  ( ( 0R  <R  A  /\  0R  <R  B )  ->  0R  <R  ( A  .R  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557   <.cop 3656   class class class wbr 4039  (class class class)co 5874   [cec 6674   P.cnp 8497    +P. cpp 8499    .P. cmp 8500    <P cltp 8501    ~R cer 8504   R.cnr 8505   0Rc0r 8506    .R cmr 8510    <R cltr 8511
This theorem is referenced by:  sqgt0sr  8744  axpre-mulgt0  8806
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-omul 6500  df-er 6676  df-ec 6678  df-qs 6682  df-ni 8512  df-pli 8513  df-mi 8514  df-lti 8515  df-plpq 8548  df-mpq 8549  df-ltpq 8550  df-enq 8551  df-nq 8552  df-erq 8553  df-plq 8554  df-mq 8555  df-1nq 8556  df-rq 8557  df-ltnq 8558  df-np 8621  df-1p 8622  df-plp 8623  df-mp 8624  df-ltp 8625  df-mpr 8696  df-enr 8697  df-nr 8698  df-mr 8700  df-ltr 8701  df-0r 8702
  Copyright terms: Public domain W3C validator