MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgt1 Unicode version

Theorem mulgt1 9631
Description: The product of two numbers greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005.)
Assertion
Ref Expression
mulgt1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  1  <  ( A  x.  B
) )

Proof of Theorem mulgt1
StepHypRef Expression
1 simpl 443 . . . . 5  |-  ( ( 1  <  A  /\  1  <  B )  -> 
1  <  A )
21a1i 10 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
A  /\  1  <  B )  ->  1  <  A ) )
3 0lt1 9312 . . . . . . . . 9  |-  0  <  1
4 0re 8854 . . . . . . . . . 10  |-  0  e.  RR
5 1re 8853 . . . . . . . . . 10  |-  1  e.  RR
6 lttr 8915 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  1  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  1  /\  1  <  A )  ->  0  <  A
) )
74, 5, 6mp3an12 1267 . . . . . . . . 9  |-  ( A  e.  RR  ->  (
( 0  <  1  /\  1  <  A )  ->  0  <  A
) )
83, 7mpani 657 . . . . . . . 8  |-  ( A  e.  RR  ->  (
1  <  A  ->  0  <  A ) )
98adantr 451 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  A  ->  0  <  A ) )
10 ltmul2 9623 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( 1  <  B  <->  ( A  x.  1 )  <  ( A  x.  B ) ) )
1110biimpd 198 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( 1  <  B  ->  ( A  x.  1 )  <  ( A  x.  B ) ) )
125, 11mp3an1 1264 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  ->  ( 1  <  B  ->  ( A  x.  1 )  <  ( A  x.  B ) ) )
1312exp32 588 . . . . . . . 8  |-  ( B  e.  RR  ->  ( A  e.  RR  ->  ( 0  <  A  -> 
( 1  <  B  ->  ( A  x.  1 )  <  ( A  x.  B ) ) ) ) )
1413impcom 419 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  A  ->  ( 1  <  B  ->  ( A  x.  1 )  <  ( A  x.  B ) ) ) )
159, 14syld 40 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 1  <  A  ->  ( 1  <  B  ->  ( A  x.  1 )  <  ( A  x.  B ) ) ) )
1615imp3a 420 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
A  /\  1  <  B )  ->  ( A  x.  1 )  <  ( A  x.  B )
) )
17 ax-1rid 8823 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
1817adantr 451 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  1 )  =  A )
1918breq1d 4049 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  1 )  <  ( A  x.  B )  <->  A  <  ( A  x.  B ) ) )
2016, 19sylibd 205 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
A  /\  1  <  B )  ->  A  <  ( A  x.  B ) ) )
212, 20jcad 519 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
A  /\  1  <  B )  ->  ( 1  <  A  /\  A  <  ( A  x.  B
) ) ) )
22 remulcl 8838 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  x.  B
)  e.  RR )
23 lttr 8915 . . . . 5  |-  ( ( 1  e.  RR  /\  A  e.  RR  /\  ( A  x.  B )  e.  RR )  ->  (
( 1  <  A  /\  A  <  ( A  x.  B ) )  ->  1  <  ( A  x.  B )
) )
245, 23mp3an1 1264 . . . 4  |-  ( ( A  e.  RR  /\  ( A  x.  B
)  e.  RR )  ->  ( ( 1  <  A  /\  A  <  ( A  x.  B
) )  ->  1  <  ( A  x.  B
) ) )
2522, 24syldan 456 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
A  /\  A  <  ( A  x.  B ) )  ->  1  <  ( A  x.  B ) ) )
2621, 25syld 40 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 1  < 
A  /\  1  <  B )  ->  1  <  ( A  x.  B ) ) )
2726imp 418 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 1  < 
A  /\  1  <  B ) )  ->  1  <  ( A  x.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   class class class wbr 4039  (class class class)co 5874   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758    < clt 8883
This theorem is referenced by:  mulgt1d  9709  addltmul  9963  uz2mulcl  10311  addltmulALT  23042
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056
  Copyright terms: Public domain W3C validator