MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgval Unicode version

Theorem mulgval 14585
Description: Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgval.b  |-  B  =  ( Base `  G
)
mulgval.p  |-  .+  =  ( +g  `  G )
mulgval.o  |-  .0.  =  ( 0g `  G )
mulgval.i  |-  I  =  ( inv g `  G )
mulgval.t  |-  .x.  =  (.g
`  G )
mulgval.s  |-  S  =  seq  1 (  .+  ,  ( NN  X.  { X } ) )
Assertion
Ref Expression
mulgval  |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X
)  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) ) )

Proof of Theorem mulgval
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . . 4  |-  ( ( n  =  N  /\  x  =  X )  ->  n  =  N )
21eqeq1d 2304 . . 3  |-  ( ( n  =  N  /\  x  =  X )  ->  ( n  =  0  <-> 
N  =  0 ) )
31breq2d 4051 . . . 4  |-  ( ( n  =  N  /\  x  =  X )  ->  ( 0  <  n  <->  0  <  N ) )
4 simpr 447 . . . . . . . . 9  |-  ( ( n  =  N  /\  x  =  X )  ->  x  =  X )
54sneqd 3666 . . . . . . . 8  |-  ( ( n  =  N  /\  x  =  X )  ->  { x }  =  { X } )
65xpeq2d 4729 . . . . . . 7  |-  ( ( n  =  N  /\  x  =  X )  ->  ( NN  X.  {
x } )  =  ( NN  X.  { X } ) )
76seqeq3d 11070 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  ->  seq  1 (  .+  ,  ( NN  X.  { x } ) )  =  seq  1
(  .+  ,  ( NN  X.  { X }
) ) )
8 mulgval.s . . . . . 6  |-  S  =  seq  1 (  .+  ,  ( NN  X.  { X } ) )
97, 8syl6eqr 2346 . . . . 5  |-  ( ( n  =  N  /\  x  =  X )  ->  seq  1 (  .+  ,  ( NN  X.  { x } ) )  =  S )
109, 1fveq12d 5547 . . . 4  |-  ( ( n  =  N  /\  x  =  X )  ->  (  seq  1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  n
)  =  ( S `
 N ) )
111negeqd 9062 . . . . . 6  |-  ( ( n  =  N  /\  x  =  X )  -> 
-u n  =  -u N )
129, 11fveq12d 5547 . . . . 5  |-  ( ( n  =  N  /\  x  =  X )  ->  (  seq  1 ( 
.+  ,  ( NN 
X.  { x }
) ) `  -u n
)  =  ( S `
 -u N ) )
1312fveq2d 5545 . . . 4  |-  ( ( n  =  N  /\  x  =  X )  ->  ( I `  (  seq  1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) )  =  ( I `  ( S `  -u N
) ) )
143, 10, 13ifbieq12d 3600 . . 3  |-  ( ( n  =  N  /\  x  =  X )  ->  if ( 0  < 
n ,  (  seq  1 (  .+  , 
( NN  X.  {
x } ) ) `
 n ) ,  ( I `  (  seq  1 (  .+  , 
( NN  X.  {
x } ) ) `
 -u n ) ) )  =  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) )
152, 14ifbieq2d 3598 . 2  |-  ( ( n  =  N  /\  x  =  X )  ->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq  1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq  1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) )  =  if ( N  =  0 ,  .0.  ,  if ( 0  < 
N ,  ( S `
 N ) ,  ( I `  ( S `  -u N ) ) ) ) )
16 mulgval.b . . 3  |-  B  =  ( Base `  G
)
17 mulgval.p . . 3  |-  .+  =  ( +g  `  G )
18 mulgval.o . . 3  |-  .0.  =  ( 0g `  G )
19 mulgval.i . . 3  |-  I  =  ( inv g `  G )
20 mulgval.t . . 3  |-  .x.  =  (.g
`  G )
2116, 17, 18, 19, 20mulgfval 14584 . 2  |-  .x.  =  ( n  e.  ZZ ,  x  e.  B  |->  if ( n  =  0 ,  .0.  ,  if ( 0  <  n ,  (  seq  1
(  .+  ,  ( NN  X.  { x }
) ) `  n
) ,  ( I `
 (  seq  1
(  .+  ,  ( NN  X.  { x }
) ) `  -u n
) ) ) ) )
22 fvex 5555 . . . 4  |-  ( 0g
`  G )  e. 
_V
2318, 22eqeltri 2366 . . 3  |-  .0.  e.  _V
24 fvex 5555 . . . 4  |-  ( S `
 N )  e. 
_V
25 fvex 5555 . . . 4  |-  ( I `
 ( S `  -u N ) )  e. 
_V
2624, 25ifex 3636 . . 3  |-  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) )  e.  _V
2723, 26ifex 3636 . 2  |-  if ( N  =  0 ,  .0.  ,  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) )  e.  _V
2815, 21, 27ovmpt2a 5994 1  |-  ( ( N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X
)  =  if ( N  =  0 ,  .0.  ,  if ( 0  <  N , 
( S `  N
) ,  ( I `
 ( S `  -u N ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   ifcif 3578   {csn 3653   class class class wbr 4039    X. cxp 4703   ` cfv 5271  (class class class)co 5874   0cc0 8753   1c1 8754    < clt 8883   -ucneg 9054   NNcn 9762   ZZcz 10040    seq cseq 11062   Basecbs 13164   +g cplusg 13224   0gc0g 13416   inv gcminusg 14379  .gcmg 14382
This theorem is referenced by:  mulg0  14588  mulgnn  14589  mulgnegnn  14593  subgmulg  14651
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-neg 9056  df-z 10041  df-seq 11063  df-mulg 14508
  Copyright terms: Public domain W3C validator