MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulidnq Structured version   Unicode version

Theorem mulidnq 8832
Description: Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulidnq  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  A )

Proof of Theorem mulidnq
StepHypRef Expression
1 1nq 8797 . . 3  |-  1Q  e.  Q.
2 mulpqnq 8810 . . 3  |-  ( ( A  e.  Q.  /\  1Q  e.  Q. )  -> 
( A  .Q  1Q )  =  ( /Q `  ( A  .pQ  1Q ) ) )
31, 2mpan2 653 . 2  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  ( /Q `  ( A  .pQ  1Q ) ) )
4 relxp 4975 . . . . . . 7  |-  Rel  ( N.  X.  N. )
5 elpqn 8794 . . . . . . 7  |-  ( A  e.  Q.  ->  A  e.  ( N.  X.  N. ) )
6 1st2nd 6385 . . . . . . 7  |-  ( ( Rel  ( N.  X.  N. )  /\  A  e.  ( N.  X.  N. ) )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
74, 5, 6sylancr 645 . . . . . 6  |-  ( A  e.  Q.  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
8 df-1nq 8785 . . . . . . 7  |-  1Q  =  <. 1o ,  1o >.
98a1i 11 . . . . . 6  |-  ( A  e.  Q.  ->  1Q  =  <. 1o ,  1o >. )
107, 9oveq12d 6091 . . . . 5  |-  ( A  e.  Q.  ->  ( A  .pQ  1Q )  =  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  .pQ  <. 1o ,  1o >. ) )
11 xp1st 6368 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  ( 1st `  A )  e.  N. )
125, 11syl 16 . . . . . 6  |-  ( A  e.  Q.  ->  ( 1st `  A )  e. 
N. )
13 xp2nd 6369 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  ( 2nd `  A )  e.  N. )
145, 13syl 16 . . . . . 6  |-  ( A  e.  Q.  ->  ( 2nd `  A )  e. 
N. )
15 1pi 8752 . . . . . . 7  |-  1o  e.  N.
1615a1i 11 . . . . . 6  |-  ( A  e.  Q.  ->  1o  e.  N. )
17 mulpipq 8809 . . . . . 6  |-  ( ( ( ( 1st `  A
)  e.  N.  /\  ( 2nd `  A )  e.  N. )  /\  ( 1o  e.  N.  /\  1o  e.  N. )
)  ->  ( <. ( 1st `  A ) ,  ( 2nd `  A
) >.  .pQ  <. 1o ,  1o >. )  =  <. ( ( 1st `  A
)  .N  1o ) ,  ( ( 2nd `  A )  .N  1o ) >. )
1812, 14, 16, 16, 17syl22anc 1185 . . . . 5  |-  ( A  e.  Q.  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  .pQ  <. 1o ,  1o >. )  =  <. ( ( 1st `  A
)  .N  1o ) ,  ( ( 2nd `  A )  .N  1o ) >. )
19 mulidpi 8755 . . . . . . . 8  |-  ( ( 1st `  A )  e.  N.  ->  (
( 1st `  A
)  .N  1o )  =  ( 1st `  A
) )
2011, 19syl 16 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  ( ( 1st `  A )  .N  1o )  =  ( 1st `  A
) )
21 mulidpi 8755 . . . . . . . 8  |-  ( ( 2nd `  A )  e.  N.  ->  (
( 2nd `  A
)  .N  1o )  =  ( 2nd `  A
) )
2213, 21syl 16 . . . . . . 7  |-  ( A  e.  ( N.  X.  N. )  ->  ( ( 2nd `  A )  .N  1o )  =  ( 2nd `  A
) )
2320, 22opeq12d 3984 . . . . . 6  |-  ( A  e.  ( N.  X.  N. )  ->  <. (
( 1st `  A
)  .N  1o ) ,  ( ( 2nd `  A )  .N  1o ) >.  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >. )
245, 23syl 16 . . . . 5  |-  ( A  e.  Q.  ->  <. (
( 1st `  A
)  .N  1o ) ,  ( ( 2nd `  A )  .N  1o ) >.  =  <. ( 1st `  A ) ,  ( 2nd `  A
) >. )
2510, 18, 243eqtrd 2471 . . . 4  |-  ( A  e.  Q.  ->  ( A  .pQ  1Q )  = 
<. ( 1st `  A
) ,  ( 2nd `  A ) >. )
2625, 7eqtr4d 2470 . . 3  |-  ( A  e.  Q.  ->  ( A  .pQ  1Q )  =  A )
2726fveq2d 5724 . 2  |-  ( A  e.  Q.  ->  ( /Q `  ( A  .pQ  1Q ) )  =  ( /Q `  A ) )
28 nqerid 8802 . 2  |-  ( A  e.  Q.  ->  ( /Q `  A )  =  A )
293, 27, 283eqtrd 2471 1  |-  ( A  e.  Q.  ->  ( A  .Q  1Q )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   <.cop 3809    X. cxp 4868   Rel wrel 4875   ` cfv 5446  (class class class)co 6073   1stc1st 6339   2ndc2nd 6340   1oc1o 6709   N.cnpi 8711    .N cmi 8713    .pQ cmpq 8716   Q.cnq 8719   1Qc1q 8720   /Qcerq 8721    .Q cmq 8723
This theorem is referenced by:  recmulnq  8833  ltaddnq  8843  halfnq  8845  ltrnq  8848  addclprlem1  8885  addclprlem2  8886  mulclprlem  8888  1idpr  8898  prlem934  8902  prlem936  8916  reclem3pr  8918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-omul 6721  df-er 6897  df-ni 8741  df-mi 8743  df-lti 8744  df-mpq 8778  df-enq 8780  df-nq 8781  df-erq 8782  df-mq 8784  df-1nq 8785
  Copyright terms: Public domain W3C validator