Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mulmulvec Unicode version

Theorem mulmulvec 25687
Description: Connection between multiplication of complex numbers and scalar multiplication. (Contributed by FL, 29-May-2014.)
Hypothesis
Ref Expression
mulone.1  |-  . t  =  ( . cv `  N )
Assertion
Ref Expression
mulmulvec  |-  ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC  ^m  (
1 ... N ) ) ) )  ->  (
( S  x.  T
) . t U
)  =  ( S . t ( T . t U ) ) )

Proof of Theorem mulmulvec
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 447 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC 
^m  ( 1 ... N ) ) ) )  /\  x  e.  ( 1 ... N
) )  ->  x  e.  ( 1 ... N
) )
2 ovex 5883 . . . . . . 7  |-  ( T  x.  ( U `  x ) )  e. 
_V
3 eqid 2283 . . . . . . . 8  |-  ( x  e.  ( 1 ... N )  |->  ( T  x.  ( U `  x ) ) )  =  ( x  e.  ( 1 ... N
)  |->  ( T  x.  ( U `  x ) ) )
43fvmpt2 5608 . . . . . . 7  |-  ( ( x  e.  ( 1 ... N )  /\  ( T  x.  ( U `  x )
)  e.  _V )  ->  ( ( x  e.  ( 1 ... N
)  |->  ( T  x.  ( U `  x ) ) ) `  x
)  =  ( T  x.  ( U `  x ) ) )
51, 2, 4sylancl 643 . . . . . 6  |-  ( ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC 
^m  ( 1 ... N ) ) ) )  /\  x  e.  ( 1 ... N
) )  ->  (
( x  e.  ( 1 ... N ) 
|->  ( T  x.  ( U `  x )
) ) `  x
)  =  ( T  x.  ( U `  x ) ) )
65eqcomd 2288 . . . . 5  |-  ( ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC 
^m  ( 1 ... N ) ) ) )  /\  x  e.  ( 1 ... N
) )  ->  ( T  x.  ( U `  x ) )  =  ( ( x  e.  ( 1 ... N
)  |->  ( T  x.  ( U `  x ) ) ) `  x
) )
76oveq2d 5874 . . . 4  |-  ( ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC 
^m  ( 1 ... N ) ) ) )  /\  x  e.  ( 1 ... N
) )  ->  ( S  x.  ( T  x.  ( U `  x
) ) )  =  ( S  x.  (
( x  e.  ( 1 ... N ) 
|->  ( T  x.  ( U `  x )
) ) `  x
) ) )
8 simpl2 959 . . . . 5  |-  ( ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC 
^m  ( 1 ... N ) ) ) )  /\  x  e.  ( 1 ... N
) )  ->  S  e.  CC )
9 simpl3l 1010 . . . . 5  |-  ( ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC 
^m  ( 1 ... N ) ) ) )  /\  x  e.  ( 1 ... N
) )  ->  T  e.  CC )
10 elmapi 6792 . . . . . . . 8  |-  ( U  e.  ( CC  ^m  ( 1 ... N
) )  ->  U : ( 1 ... N ) --> CC )
1110adantl 452 . . . . . . 7  |-  ( ( T  e.  CC  /\  U  e.  ( CC  ^m  ( 1 ... N
) ) )  ->  U : ( 1 ... N ) --> CC )
12113ad2ant3 978 . . . . . 6  |-  ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC  ^m  (
1 ... N ) ) ) )  ->  U : ( 1 ... N ) --> CC )
13 ffvelrn 5663 . . . . . 6  |-  ( ( U : ( 1 ... N ) --> CC 
/\  x  e.  ( 1 ... N ) )  ->  ( U `  x )  e.  CC )
1412, 13sylan 457 . . . . 5  |-  ( ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC 
^m  ( 1 ... N ) ) ) )  /\  x  e.  ( 1 ... N
) )  ->  ( U `  x )  e.  CC )
158, 9, 14mulassd 8858 . . . 4  |-  ( ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC 
^m  ( 1 ... N ) ) ) )  /\  x  e.  ( 1 ... N
) )  ->  (
( S  x.  T
)  x.  ( U `
 x ) )  =  ( S  x.  ( T  x.  ( U `  x )
) ) )
16 simpl1 958 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC 
^m  ( 1 ... N ) ) ) )  /\  x  e.  ( 1 ... N
) )  ->  N  e.  NN )
17 simpl3r 1011 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC 
^m  ( 1 ... N ) ) ) )  /\  x  e.  ( 1 ... N
) )  ->  U  e.  ( CC  ^m  (
1 ... N ) ) )
18 mulone.1 . . . . . . . 8  |-  . t  =  ( . cv `  N )
1918ismulcv 25681 . . . . . . 7  |-  ( ( N  e.  NN  /\  T  e.  CC  /\  U  e.  ( CC  ^m  (
1 ... N ) ) )  ->  ( T . t U )  =  ( x  e.  ( 1 ... N ) 
|->  ( T  x.  ( U `  x )
) ) )
2016, 9, 17, 19syl3anc 1182 . . . . . 6  |-  ( ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC 
^m  ( 1 ... N ) ) ) )  /\  x  e.  ( 1 ... N
) )  ->  ( T . t U )  =  ( x  e.  ( 1 ... N
)  |->  ( T  x.  ( U `  x ) ) ) )
2120fveq1d 5527 . . . . 5  |-  ( ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC 
^m  ( 1 ... N ) ) ) )  /\  x  e.  ( 1 ... N
) )  ->  (
( T . t U ) `  x
)  =  ( ( x  e.  ( 1 ... N )  |->  ( T  x.  ( U `
 x ) ) ) `  x ) )
2221oveq2d 5874 . . . 4  |-  ( ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC 
^m  ( 1 ... N ) ) ) )  /\  x  e.  ( 1 ... N
) )  ->  ( S  x.  ( ( T . t U ) `
 x ) )  =  ( S  x.  ( ( x  e.  ( 1 ... N
)  |->  ( T  x.  ( U `  x ) ) ) `  x
) ) )
237, 15, 223eqtr4d 2325 . . 3  |-  ( ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC 
^m  ( 1 ... N ) ) ) )  /\  x  e.  ( 1 ... N
) )  ->  (
( S  x.  T
)  x.  ( U `
 x ) )  =  ( S  x.  ( ( T . t U ) `  x
) ) )
2423mpteq2dva 4106 . 2  |-  ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC  ^m  (
1 ... N ) ) ) )  ->  (
x  e.  ( 1 ... N )  |->  ( ( S  x.  T
)  x.  ( U `
 x ) ) )  =  ( x  e.  ( 1 ... N )  |->  ( S  x.  ( ( T . t U ) `
 x ) ) ) )
25 simp1 955 . . 3  |-  ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC  ^m  (
1 ... N ) ) ) )  ->  N  e.  NN )
26 mulcl 8821 . . . . 5  |-  ( ( S  e.  CC  /\  T  e.  CC )  ->  ( S  x.  T
)  e.  CC )
2726adantrr 697 . . . 4  |-  ( ( S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC 
^m  ( 1 ... N ) ) ) )  ->  ( S  x.  T )  e.  CC )
28273adant1 973 . . 3  |-  ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC  ^m  (
1 ... N ) ) ) )  ->  ( S  x.  T )  e.  CC )
29 simp3r 984 . . 3  |-  ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC  ^m  (
1 ... N ) ) ) )  ->  U  e.  ( CC  ^m  (
1 ... N ) ) )
3018ismulcv 25681 . . 3  |-  ( ( N  e.  NN  /\  ( S  x.  T
)  e.  CC  /\  U  e.  ( CC  ^m  ( 1 ... N
) ) )  -> 
( ( S  x.  T ) . t U )  =  ( x  e.  ( 1 ... N )  |->  ( ( S  x.  T
)  x.  ( U `
 x ) ) ) )
3125, 28, 29, 30syl3anc 1182 . 2  |-  ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC  ^m  (
1 ... N ) ) ) )  ->  (
( S  x.  T
) . t U
)  =  ( x  e.  ( 1 ... N )  |->  ( ( S  x.  T )  x.  ( U `  x ) ) ) )
32 simp3l 983 . . . 4  |-  ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC  ^m  (
1 ... N ) ) ) )  ->  T  e.  CC )
3318clsmulcv 25682 . . . 4  |-  ( ( N  e.  NN  /\  T  e.  CC  /\  U  e.  ( CC  ^m  (
1 ... N ) ) )  ->  ( T . t U )  e.  ( CC  ^m  (
1 ... N ) ) )
3425, 32, 29, 33syl3anc 1182 . . 3  |-  ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC  ^m  (
1 ... N ) ) ) )  ->  ( T . t U )  e.  ( CC  ^m  ( 1 ... N
) ) )
3518ismulcv 25681 . . 3  |-  ( ( N  e.  NN  /\  S  e.  CC  /\  ( T . t U )  e.  ( CC  ^m  ( 1 ... N
) ) )  -> 
( S . t
( T . t U ) )  =  ( x  e.  ( 1 ... N ) 
|->  ( S  x.  (
( T . t U ) `  x
) ) ) )
3634, 35syld3an3 1227 . 2  |-  ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC  ^m  (
1 ... N ) ) ) )  ->  ( S . t ( T . t U ) )  =  ( x  e.  ( 1 ... N )  |->  ( S  x.  ( ( T . t U ) `
 x ) ) ) )
3724, 31, 363eqtr4d 2325 1  |-  ( ( N  e.  NN  /\  S  e.  CC  /\  ( T  e.  CC  /\  U  e.  ( CC  ^m  (
1 ... N ) ) ) )  ->  (
( S  x.  T
) . t U
)  =  ( S . t ( T . t U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   _Vcvv 2788    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   CCcc 8735   1c1 8738    x. cmul 8742   NNcn 9746   ...cfz 10782   . cvcsmcv 25679
This theorem is referenced by:  tcnvec  25690
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-mulcl 8799  ax-mulass 8803
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-map 6774  df-mulcv 25680
  Copyright terms: Public domain W3C validator