MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulnqf Unicode version

Theorem mulnqf 8573
Description: Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.)
Assertion
Ref Expression
mulnqf  |-  .Q  :
( Q.  X.  Q. )
--> Q.

Proof of Theorem mulnqf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 nqerf 8554 . . . 4  |-  /Q :
( N.  X.  N. )
--> Q.
2 mulpqf 8570 . . . 4  |-  .pQ  :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. )
3 fco 5398 . . . 4  |-  ( ( /Q : ( N. 
X.  N. ) --> Q.  /\  .pQ 
: ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) --> ( N.  X.  N. ) )  ->  ( /Q  o.  .pQ  ) :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> Q. )
41, 2, 3mp2an 653 . . 3  |-  ( /Q  o.  .pQ  ) :
( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) --> Q.
5 elpqn 8549 . . . . 5  |-  ( x  e.  Q.  ->  x  e.  ( N.  X.  N. ) )
65ssriv 3184 . . . 4  |-  Q.  C_  ( N.  X.  N. )
7 xpss12 4792 . . . 4  |-  ( ( Q.  C_  ( N.  X.  N. )  /\  Q.  C_  ( N.  X.  N. ) )  ->  ( Q.  X.  Q. )  C_  ( ( N.  X.  N. )  X.  ( N.  X.  N. ) ) )
86, 6, 7mp2an 653 . . 3  |-  ( Q. 
X.  Q. )  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) )
9 fssres 5408 . . 3  |-  ( ( ( /Q  o.  .pQ  ) : ( ( N. 
X.  N. )  X.  ( N.  X.  N. ) ) --> Q.  /\  ( Q. 
X.  Q. )  C_  (
( N.  X.  N. )  X.  ( N.  X.  N. ) ) )  -> 
( ( /Q  o.  .pQ  )  |`  ( Q. 
X.  Q. ) ) : ( Q.  X.  Q. )
--> Q. )
104, 8, 9mp2an 653 . 2  |-  ( ( /Q  o.  .pQ  )  |`  ( Q.  X.  Q. ) ) : ( Q.  X.  Q. ) --> Q.
11 df-mq 8539 . . 3  |-  .Q  =  ( ( /Q  o.  .pQ  )  |`  ( Q. 
X.  Q. ) )
1211feq1i 5383 . 2  |-  (  .Q  : ( Q.  X.  Q. ) --> Q.  <->  ( ( /Q  o.  .pQ  )  |`  ( Q.  X.  Q. ) ) : ( Q.  X.  Q. ) --> Q. )
1310, 12mpbir 200 1  |-  .Q  :
( Q.  X.  Q. )
--> Q.
Colors of variables: wff set class
Syntax hints:    C_ wss 3152    X. cxp 4687    |` cres 4691    o. ccom 4693   -->wf 5251   N.cnpi 8466    .pQ cmpq 8471   Q.cnq 8474   /Qcerq 8476    .Q cmq 8478
This theorem is referenced by:  mulcomnq  8577  mulerpq  8581  mulassnq  8583  distrnq  8585  recmulnq  8588  recclnq  8590  dmrecnq  8592  ltmnq  8596  prlem936  8671
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ni 8496  df-mi 8498  df-lti 8499  df-mpq 8533  df-enq 8535  df-nq 8536  df-erq 8537  df-mq 8539  df-1nq 8540
  Copyright terms: Public domain W3C validator