MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulogsumlem Unicode version

Theorem mulogsumlem 21092
Description: Lemma for mulogsum 21093. (Contributed by Mario Carneiro, 14-May-2016.)
Assertion
Ref Expression
mulogsumlem  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O ( 1 )
Distinct variable group:    m, n, x

Proof of Theorem mulogsumlem
StepHypRef Expression
1 fzfid 11239 . . . . . 6  |-  ( x  e.  RR+  ->  ( 1 ... ( |_ `  x ) )  e. 
Fin )
2 elfznn 11012 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  NN )
32adantl 453 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  NN )
4 mucl 20791 . . . . . . . . . 10  |-  ( n  e.  NN  ->  (
mmu `  n )  e.  ZZ )
53, 4syl 16 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  ZZ )
65zred 10307 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  RR )
76, 3nndivred 9980 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  RR )
87recnd 9047 . . . . . 6  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
mmu `  n )  /  n )  e.  CC )
91, 8fsumcl 12454 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  CC )
109adantl 453 . . . 4  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  e.  CC )
11 emre 20711 . . . . . 6  |-  gamma  e.  RR
1211recni 9035 . . . . 5  |-  gamma  e.  CC
1312a1i 11 . . . 4  |-  ( (  T.  /\  x  e.  RR+ )  ->  gamma  e.  CC )
14 mudivsum 21091 . . . . 5  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
) )  e.  O
( 1 )
1514a1i 11 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n ) )  e.  O ( 1 ) )
16 rpssre 10554 . . . . . 6  |-  RR+  C_  RR
17 o1const 12340 . . . . . 6  |-  ( (
RR+  C_  RR  /\  gamma  e.  CC )  ->  (
x  e.  RR+  |->  gamma )  e.  O ( 1 ) )
1816, 12, 17mp2an 654 . . . . 5  |-  ( x  e.  RR+  |->  gamma )  e.  O ( 1 )
1918a1i 11 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  gamma )  e.  O ( 1 ) )
2010, 13, 15, 19o1mul2 12345 . . 3  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
)  x.  gamma )
)  e.  O ( 1 ) )
21 fzfid 11239 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1 ... ( |_ `  ( x  /  n
) ) )  e. 
Fin )
22 elfznn 11012 . . . . . . . . . . . 12  |-  ( m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) )  ->  m  e.  NN )
2322adantl 453 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  m  e.  NN )
2423nnrecred 9977 . . . . . . . . . 10  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( 1  /  m )  e.  RR )
2521, 24fsumrecl 12455 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  e.  RR )
262nnrpd 10579 . . . . . . . . . . 11  |-  ( n  e.  ( 1 ... ( |_ `  x
) )  ->  n  e.  RR+ )
27 rpdivcl 10566 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  RR+ )  ->  (
x  /  n )  e.  RR+ )
2826, 27sylan2 461 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  /  n )  e.  RR+ )
2928relogcld 20385 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  RR )
3025, 29resubcld 9397 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) )  e.  RR )
317, 30remulcld 9049 . . . . . . 7  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  e.  RR )
321, 31fsumrecl 12455 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  RR )
3332recnd 9047 . . . . 5  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  CC )
3433adantl 453 . . . 4  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  e.  CC )
35 mulcl 9007 . . . . . 6  |-  ( (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  e.  CC  /\  gamma  e.  CC )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  x.  gamma )  e.  CC )
369, 12, 35sylancl 644 . . . . 5  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n )  x. 
gamma )  e.  CC )
3736adantl 453 . . . 4  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n )  x. 
gamma )  e.  CC )
38 nnrecre 9968 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  (
1  /  m )  e.  RR )
3938recnd 9047 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  (
1  /  m )  e.  CC )
4023, 39syl 16 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  /\  m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) )  ->  ( 1  /  m )  e.  CC )
4121, 40fsumcl 12454 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  e.  CC )
4229recnd 9047 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( log `  ( x  /  n
) )  e.  CC )
4341, 42subcld 9343 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) )  e.  CC )
448, 43mulcld 9041 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  e.  CC )
45 mulcl 9007 . . . . . . . . 9  |-  ( ( ( ( mmu `  n )  /  n
)  e.  CC  /\  gamma  e.  CC )  ->  (
( ( mmu `  n )  /  n
)  x.  gamma )  e.  CC )
468, 12, 45sylancl 644 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  gamma )  e.  CC )
471, 44, 46fsumsub 12498 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( ( mmu `  n )  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  -  ( ( ( mmu `  n )  /  n )  x. 
gamma ) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  -  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  gamma ) ) )
4812a1i 11 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  gamma  e.  CC )
4941, 42, 48subsub4d 9374 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n
) ) ) ( 1  /  m )  -  ( log `  (
x  /  n ) ) )  -  gamma )  =  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) )
5049oveq2d 6036 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) )  -  gamma )
)  =  ( ( ( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) ) )
518, 43, 48subdid 9421 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) )  -  gamma )
)  =  ( ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  -  (
( ( mmu `  n )  /  n
)  x.  gamma )
) )
5250, 51eqtr3d 2421 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) )  =  ( ( ( ( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  -  ( ( ( mmu `  n )  /  n )  x. 
gamma ) ) )
5352sumeq2dv 12424 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  -  (
( ( mmu `  n )  /  n
)  x.  gamma )
) )
5412a1i 11 . . . . . . . . 9  |-  ( x  e.  RR+  ->  gamma  e.  CC )
551, 54, 8fsummulc1 12495 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( mmu `  n )  /  n )  x. 
gamma )  =  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  gamma ) )
5655oveq2d 6036 . . . . . . 7  |-  ( x  e.  RR+  ->  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n )  /  n
)  x.  gamma )
)  =  ( sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( log `  ( x  /  n
) ) ) )  -  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  gamma )
) )
5747, 53, 563eqtr4d 2429 . . . . . 6  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) )  =  (
sum_ n  e.  (
1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  x.  gamma ) ) )
5857mpteq2ia 4232 . . . . 5  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  =  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  x.  gamma ) ) )
5916a1i 11 . . . . . 6  |-  (  T. 
->  RR+  C_  RR )
6042, 48addcld 9040 . . . . . . . . . 10  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( log `  ( x  /  n ) )  + 
gamma )  e.  CC )
6141, 60subcld 9343 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
)  e.  CC )
628, 61mulcld 9041 . . . . . . . 8  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) )  e.  CC )
631, 62fsumcl 12454 . . . . . . 7  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) )  e.  CC )
6463adantl 453 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) )  e.  CC )
65 1re 9023 . . . . . . 7  |-  1  e.  RR
6665a1i 11 . . . . . 6  |-  (  T. 
->  1  e.  RR )
6763abscld 12165 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  e.  RR )
6862abscld 12165 . . . . . . . . 9  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  e.  RR )
691, 68fsumrecl 12455 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  e.  RR )
7065a1i 11 . . . . . . . 8  |-  ( x  e.  RR+  ->  1  e.  RR )
711, 62fsumabs 12507 . . . . . . . 8  |-  ( x  e.  RR+  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  ( ( ( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) ) ) )
72 rprege0 10558 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <_  x ) )
73 flge0nn0 11152 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  0  <_  x )  -> 
( |_ `  x
)  e.  NN0 )
7472, 73syl 16 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( |_
`  x )  e. 
NN0 )
7574nn0red 10207 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( |_
`  x )  e.  RR )
76 rerpdivcl 10571 . . . . . . . . . 10  |-  ( ( ( |_ `  x
)  e.  RR  /\  x  e.  RR+ )  -> 
( ( |_ `  x )  /  x
)  e.  RR )
7775, 76mpancom 651 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  /  x )  e.  RR )
78 rpreccl 10567 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( 1  /  x )  e.  RR+ )
7978adantr 452 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  x )  e.  RR+ )
8079rpred 10580 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  x )  e.  RR )
818abscld 12165 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  /  n
) )  e.  RR )
823nnrecred 9977 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  RR )
8361abscld 12165 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) )  e.  RR )
84 id 20 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  e.  RR+ )
85 rpdivcl 10566 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  RR+  /\  x  e.  RR+ )  ->  (
n  /  x )  e.  RR+ )
8626, 84, 85syl2anr 465 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  /  x )  e.  RR+ )
8786rpred 10580 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  /  x )  e.  RR )
888absge0d 12173 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( ( mmu `  n )  /  n ) ) )
8961absge0d 12173 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  0  <_  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )
906recnd 9047 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( mmu `  n )  e.  CC )
913nncnd 9948 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  CC )
923nnne0d 9976 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  =/=  0 )
9390, 91, 92absdivd 12184 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  /  n
) )  =  ( ( abs `  (
mmu `  n )
)  /  ( abs `  n ) ) )
943nnrpd 10579 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  n  e.  RR+ )
95 rprege0 10558 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  RR+  ->  ( n  e.  RR  /\  0  <_  n ) )
9694, 95syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  e.  RR  /\  0  <_  n ) )
97 absid 12028 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  RR  /\  0  <_  n )  -> 
( abs `  n
)  =  n )
9896, 97syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  n )  =  n )
9998oveq2d 6036 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  n ) )  / 
( abs `  n
) )  =  ( ( abs `  (
mmu `  n )
)  /  n ) )
10093, 99eqtrd 2419 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  /  n
) )  =  ( ( abs `  (
mmu `  n )
)  /  n ) )
10190abscld 12165 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( mmu `  n
) )  e.  RR )
10265a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  RR )
103 mule1 20798 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  ->  ( abs `  ( mmu `  n ) )  <_ 
1 )
1043, 103syl 16 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( mmu `  n
) )  <_  1
)
105101, 102, 94, 104lediv1dd 10634 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( mmu `  n ) )  /  n )  <_  (
1  /  n ) )
106100, 105eqbrtrd 4173 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( mmu `  n )  /  n
) )  <_  (
1  /  n ) )
107 harmonicbnd4 20716 . . . . . . . . . . . . . . 15  |-  ( ( x  /  n )  e.  RR+  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) )  <_  ( 1  / 
( x  /  n
) ) )
10828, 107syl 16 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) )  <_  ( 1  / 
( x  /  n
) ) )
109 rpcnne0 10561 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  ( x  e.  CC  /\  x  =/=  0 ) )
110109adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( x  e.  CC  /\  x  =/=  0 ) )
111 rpcnne0 10561 . . . . . . . . . . . . . . . 16  |-  ( n  e.  RR+  ->  ( n  e.  CC  /\  n  =/=  0 ) )
11294, 111syl 16 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  e.  CC  /\  n  =/=  0 ) )
113 recdiv 9652 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  CC  /\  x  =/=  0 )  /\  ( n  e.  CC  /\  n  =/=  0 ) )  -> 
( 1  /  (
x  /  n ) )  =  ( n  /  x ) )
114110, 112, 113syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  ( x  /  n ) )  =  ( n  /  x
) )
115108, 114breqtrd 4177 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) )  <_  ( n  /  x ) )
11681, 82, 83, 87, 88, 89, 106, 115lemul12ad 9885 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( ( abs `  ( ( mmu `  n )  /  n
) )  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) ) )  <_  ( (
1  /  n )  x.  ( n  /  x ) ) )
1178, 61absmuld 12183 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  =  ( ( abs `  (
( mmu `  n
)  /  n ) )  x.  ( abs `  ( sum_ m  e.  ( 1 ... ( |_
`  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) ) ) )
118 ax-1cn 8981 . . . . . . . . . . . . . . 15  |-  1  e.  CC
119118a1i 11 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  1  e.  CC )
120 dmdcan 9656 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  CC  /\  n  =/=  0 )  /\  ( x  e.  CC  /\  x  =/=  0 )  /\  1  e.  CC )  ->  (
( n  /  x
)  x.  ( 1  /  n ) )  =  ( 1  /  x ) )
121112, 110, 119, 120syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
n  /  x )  x.  ( 1  /  n ) )  =  ( 1  /  x
) )
12286rpcnd 10582 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( n  /  x )  e.  CC )
12382recnd 9047 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  n )  e.  CC )
124122, 123mulcomd 9042 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( (
n  /  x )  x.  ( 1  /  n ) )  =  ( ( 1  /  n )  x.  (
n  /  x ) ) )
125121, 124eqtr3d 2421 . . . . . . . . . . . 12  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( 1  /  x )  =  ( ( 1  /  n )  x.  (
n  /  x ) ) )
126116, 117, 1253brtr4d 4183 . . . . . . . . . . 11  |-  ( ( x  e.  RR+  /\  n  e.  ( 1 ... ( |_ `  x ) ) )  ->  ( abs `  ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  <_ 
( 1  /  x
) )
1271, 68, 80, 126fsumle 12505 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x ) )
128 hashfz1 11557 . . . . . . . . . . . . 13  |-  ( ( |_ `  x )  e.  NN0  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
12974, 128syl 16 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( # `  ( 1 ... ( |_ `  x ) ) )  =  ( |_
`  x ) )
130129oveq1d 6035 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  ( 1  /  x
) )  =  ( ( |_ `  x
)  x.  ( 1  /  x ) ) )
13178rpcnd 10582 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( 1  /  x )  e.  CC )
132 fsumconst 12500 . . . . . . . . . . . 12  |-  ( ( ( 1 ... ( |_ `  x ) )  e.  Fin  /\  (
1  /  x )  e.  CC )  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x )  =  ( ( # `  ( 1 ... ( |_ `  x ) ) )  x.  ( 1  /  x ) ) )
1331, 131, 132syl2anc 643 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x
)  =  ( (
# `  ( 1 ... ( |_ `  x
) ) )  x.  ( 1  /  x
) ) )
13474nn0cnd 10208 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  ( |_
`  x )  e.  CC )
135 rpcn 10552 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  CC )
136 rpne0 10559 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  =/=  0 )
137134, 135, 136divrecd 9725 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  /  x )  =  ( ( |_ `  x )  x.  (
1  /  x ) ) )
138130, 133, 1373eqtr4d 2429 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( 1  /  x
)  =  ( ( |_ `  x )  /  x ) )
139127, 138breqtrd 4177 . . . . . . . . 9  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  <_ 
( ( |_ `  x )  /  x
) )
140 rpre 10550 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
141 flle 11135 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  ( |_ `  x )  <_  x )
142140, 141syl 16 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( |_
`  x )  <_  x )
143135mulid1d 9038 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  x.  1 )  =  x )
144142, 143breqtrrd 4179 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( |_
`  x )  <_ 
( x  x.  1 ) )
145 reflcl 11132 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  ( |_ `  x )  e.  RR )
146140, 145syl 16 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( |_
`  x )  e.  RR )
147 rpregt0 10557 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  e.  RR  /\  0  <  x ) )
148 ledivmul 9815 . . . . . . . . . . 11  |-  ( ( ( |_ `  x
)  e.  RR  /\  1  e.  RR  /\  (
x  e.  RR  /\  0  <  x ) )  ->  ( ( ( |_ `  x )  /  x )  <_ 
1  <->  ( |_ `  x )  <_  (
x  x.  1 ) ) )
149146, 70, 147, 148syl3anc 1184 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( ( ( |_ `  x
)  /  x )  <_  1  <->  ( |_ `  x )  <_  (
x  x.  1 ) ) )
150144, 149mpbird 224 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( ( |_ `  x )  /  x )  <_ 
1 )
15169, 77, 70, 139, 150letrd 9159 . . . . . . . 8  |-  ( x  e.  RR+  ->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( abs `  (
( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  <_ 
1 )
15267, 69, 70, 71, 151letrd 9159 . . . . . . 7  |-  ( x  e.  RR+  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  <_ 
1 )
153152ad2antrl 709 . . . . . 6  |-  ( (  T.  /\  ( x  e.  RR+  /\  1  <_  x ) )  -> 
( abs `  sum_ n  e.  ( 1 ... ( |_ `  x
) ) ( ( ( mmu `  n
)  /  n )  x.  ( sum_ m  e.  ( 1 ... ( |_ `  ( x  /  n ) ) ) ( 1  /  m
)  -  ( ( log `  ( x  /  n ) )  +  gamma ) ) ) )  <_  1 )
15459, 64, 66, 66, 153elo1d 12257 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( ( log `  (
x  /  n ) )  +  gamma )
) ) )  e.  O ( 1 ) )
15558, 154syl5eqelr 2472 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) )  -  ( sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( mmu `  n
)  /  n )  x.  gamma ) ) )  e.  O ( 1 ) )
15634, 37, 155o1dif 12350 . . 3  |-  (  T. 
->  ( ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O ( 1 )  <-> 
( x  e.  RR+  |->  ( sum_ n  e.  ( 1 ... ( |_
`  x ) ) ( ( mmu `  n )  /  n
)  x.  gamma )
)  e.  O ( 1 ) ) )
15720, 156mpbird 224 . 2  |-  (  T. 
->  ( x  e.  RR+  |->  sum_
n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O ( 1 ) )
158157trud 1329 1  |-  ( x  e.  RR+  |->  sum_ n  e.  ( 1 ... ( |_ `  x ) ) ( ( ( mmu `  n )  /  n
)  x.  ( sum_ m  e.  ( 1 ... ( |_ `  (
x  /  n ) ) ) ( 1  /  m )  -  ( log `  ( x  /  n ) ) ) ) )  e.  O ( 1 )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    T. wtru 1322    = wceq 1649    e. wcel 1717    =/= wne 2550    C_ wss 3263   class class class wbr 4153    e. cmpt 4207   ` cfv 5394  (class class class)co 6020   Fincfn 7045   CCcc 8921   RRcr 8922   0cc0 8923   1c1 8924    + caddc 8926    x. cmul 8928    < clt 9053    <_ cle 9054    - cmin 9223    / cdiv 9609   NNcn 9932   NN0cn0 10153   ZZcz 10214   RR+crp 10544   ...cfz 10975   |_cfl 11128   #chash 11545   abscabs 11966   O ( 1 )co1 12207   sum_csu 12406   logclog 20319   gammacem 20697   mmucmu 20744
This theorem is referenced by:  mulogsum  21093
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-addf 9002  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-disj 4124  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-pm 6957  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-oi 7412  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ioo 10852  df-ioc 10853  df-ico 10854  df-icc 10855  df-fz 10976  df-fzo 11066  df-fl 11129  df-mod 11178  df-seq 11251  df-exp 11310  df-fac 11494  df-bc 11521  df-hash 11546  df-shft 11809  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-limsup 12192  df-clim 12209  df-rlim 12210  df-o1 12211  df-lo1 12212  df-sum 12407  df-ef 12597  df-e 12598  df-sin 12599  df-cos 12600  df-pi 12602  df-dvds 12780  df-gcd 12934  df-prm 13007  df-pc 13138  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-hom 13480  df-cco 13481  df-rest 13577  df-topn 13578  df-topgen 13594  df-pt 13595  df-prds 13598  df-xrs 13653  df-0g 13654  df-gsum 13655  df-qtop 13660  df-imas 13661  df-xps 13663  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-submnd 14666  df-mulg 14742  df-cntz 15043  df-cmn 15341  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-fbas 16623  df-fg 16624  df-cnfld 16627  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-cld 17006  df-ntr 17007  df-cls 17008  df-nei 17085  df-lp 17123  df-perf 17124  df-cn 17213  df-cnp 17214  df-haus 17301  df-tx 17515  df-hmeo 17708  df-fil 17799  df-fm 17891  df-flim 17892  df-flf 17893  df-xms 18259  df-ms 18260  df-tms 18261  df-cncf 18779  df-limc 19620  df-dv 19621  df-log 20321  df-em 20698  df-mu 20750
  Copyright terms: Public domain W3C validator