Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mult2inv Unicode version

Theorem mult2inv 25527
Description: Multiplication of two additive inverses. (Contributed by FL, 6-Sep-2009.)
Hypotheses
Ref Expression
mult2inv.1  |-  X  =  ran  G
mult2inv.2  |-  G  =  ( 1st `  R
)
mult2inv.3  |-  H  =  ( 2nd `  R
)
Assertion
Ref Expression
mult2inv  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( inv `  G
) `  A ) H ( ( inv `  G ) `  B
) )  =  ( A H B ) )

Proof of Theorem mult2inv
StepHypRef Expression
1 mult2inv.2 . . . . . 6  |-  G  =  ( 1st `  R
)
21rngogrpo 21073 . . . . 5  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
323ad2ant1 976 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  B  e.  X )  ->  G  e.  GrpOp )
4 simp3 957 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  X )
5 mult2inv.1 . . . . 5  |-  X  =  ran  G
6 eqid 2296 . . . . 5  |-  ( inv `  G )  =  ( inv `  G )
75, 6grpoinvcl 20909 . . . 4  |-  ( ( G  e.  GrpOp  /\  B  e.  X )  ->  (
( inv `  G
) `  B )  e.  X )
83, 4, 7syl2anc 642 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  B  e.  X )  ->  (
( inv `  G
) `  B )  e.  X )
9 mult2inv.3 . . . 4  |-  H  =  ( 2nd `  R
)
105, 1, 9multinv 25525 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  (
( inv `  G
) `  B )  e.  X )  ->  (
( ( inv `  G
) `  A ) H ( ( inv `  G ) `  B
) )  =  ( ( inv `  G
) `  ( A H ( ( inv `  G ) `  B
) ) ) )
118, 10syld3an3 1227 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( inv `  G
) `  A ) H ( ( inv `  G ) `  B
) )  =  ( ( inv `  G
) `  ( A H ( ( inv `  G ) `  B
) ) ) )
125, 1, 9multinvb 25526 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  B  e.  X )  ->  ( A H ( ( inv `  G ) `  B
) )  =  ( ( inv `  G
) `  ( A H B ) ) )
1312fveq2d 5545 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  B  e.  X )  ->  (
( inv `  G
) `  ( A H ( ( inv `  G ) `  B
) ) )  =  ( ( inv `  G
) `  ( ( inv `  G ) `  ( A H B ) ) ) )
141, 9, 5rngocl 21065 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  B  e.  X )  ->  ( A H B )  e.  X )
155, 6grpo2inv 20922 . . 3  |-  ( ( G  e.  GrpOp  /\  ( A H B )  e.  X )  ->  (
( inv `  G
) `  ( ( inv `  G ) `  ( A H B ) ) )  =  ( A H B ) )
163, 14, 15syl2anc 642 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  B  e.  X )  ->  (
( inv `  G
) `  ( ( inv `  G ) `  ( A H B ) ) )  =  ( A H B ) )
1711, 13, 163eqtrd 2332 1  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  B  e.  X )  ->  (
( ( inv `  G
) `  A ) H ( ( inv `  G ) `  B
) )  =  ( A H B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1632    e. wcel 1696   ran crn 4706   ` cfv 5271  (class class class)co 5874   1stc1st 6136   2ndc2nd 6137   GrpOpcgr 20869   invcgn 20871   RingOpscrngo 21058
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-1st 6138  df-2nd 6139  df-riota 6320  df-grpo 20874  df-gid 20875  df-ginv 20876  df-ablo 20965  df-rngo 21059
  Copyright terms: Public domain W3C validator