MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mumul Unicode version

Theorem mumul 20831
Description: The Möbius function is a multiplicative function. This is one of the primary interests of the Möbius function as an arithmetic function. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
mumul  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  ->  (
mmu `  ( A  x.  B ) )  =  ( ( mmu `  A )  x.  (
mmu `  B )
) )

Proof of Theorem mumul
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 simpl2 961 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( mmu `  A )  =  0 )  ->  B  e.  NN )
2 mucl 20791 . . . . . 6  |-  ( B  e.  NN  ->  (
mmu `  B )  e.  ZZ )
31, 2syl 16 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( mmu `  A )  =  0 )  -> 
( mmu `  B
)  e.  ZZ )
43zcnd 10308 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( mmu `  A )  =  0 )  -> 
( mmu `  B
)  e.  CC )
54mul02d 9196 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( mmu `  A )  =  0 )  -> 
( 0  x.  (
mmu `  B )
)  =  0 )
6 simpr 448 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( mmu `  A )  =  0 )  -> 
( mmu `  A
)  =  0 )
76oveq1d 6035 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( mmu `  A )  =  0 )  -> 
( ( mmu `  A )  x.  (
mmu `  B )
)  =  ( 0  x.  ( mmu `  B ) ) )
8 mumullem1 20829 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( mmu `  A )  =  0 )  ->  ( mmu `  ( A  x.  B
) )  =  0 )
983adantl3 1115 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( mmu `  A )  =  0 )  -> 
( mmu `  ( A  x.  B )
)  =  0 )
105, 7, 93eqtr4rd 2430 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( mmu `  A )  =  0 )  -> 
( mmu `  ( A  x.  B )
)  =  ( ( mmu `  A )  x.  ( mmu `  B ) ) )
11 simpl1 960 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( mmu `  B )  =  0 )  ->  A  e.  NN )
12 mucl 20791 . . . . . 6  |-  ( A  e.  NN  ->  (
mmu `  A )  e.  ZZ )
1311, 12syl 16 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( mmu `  B )  =  0 )  -> 
( mmu `  A
)  e.  ZZ )
1413zcnd 10308 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( mmu `  B )  =  0 )  -> 
( mmu `  A
)  e.  CC )
1514mul01d 9197 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( mmu `  B )  =  0 )  -> 
( ( mmu `  A )  x.  0 )  =  0 )
16 simpr 448 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( mmu `  B )  =  0 )  -> 
( mmu `  B
)  =  0 )
1716oveq2d 6036 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( mmu `  B )  =  0 )  -> 
( ( mmu `  A )  x.  (
mmu `  B )
)  =  ( ( mmu `  A )  x.  0 ) )
18 nncn 9940 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  CC )
19 nncn 9940 . . . . . . . 8  |-  ( B  e.  NN  ->  B  e.  CC )
20 mulcom 9009 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
2118, 19, 20syl2an 464 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  x.  B
)  =  ( B  x.  A ) )
2221fveq2d 5672 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( mmu `  ( A  x.  B )
)  =  ( mmu `  ( B  x.  A
) ) )
2322adantr 452 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( mmu `  B )  =  0 )  ->  ( mmu `  ( A  x.  B
) )  =  ( mmu `  ( B  x.  A ) ) )
24 mumullem1 20829 . . . . . 6  |-  ( ( ( B  e.  NN  /\  A  e.  NN )  /\  ( mmu `  B )  =  0 )  ->  ( mmu `  ( B  x.  A
) )  =  0 )
2524ancom1s 781 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( mmu `  B )  =  0 )  ->  ( mmu `  ( B  x.  A
) )  =  0 )
2623, 25eqtrd 2419 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( mmu `  B )  =  0 )  ->  ( mmu `  ( A  x.  B
) )  =  0 )
27263adantl3 1115 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( mmu `  B )  =  0 )  -> 
( mmu `  ( A  x.  B )
)  =  0 )
2815, 17, 273eqtr4rd 2430 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( mmu `  B )  =  0 )  -> 
( mmu `  ( A  x.  B )
)  =  ( ( mmu `  A )  x.  ( mmu `  B ) ) )
29 simpl1 960 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  A  e.  NN )
30 simpl2 961 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  B  e.  NN )
3129, 30nnmulcld 9979 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( A  x.  B )  e.  NN )
32 mumullem2 20830 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( mmu `  ( A  x.  B
) )  =/=  0
)
33 muval2 20784 . . . 4  |-  ( ( ( A  x.  B
)  e.  NN  /\  ( mmu `  ( A  x.  B ) )  =/=  0 )  -> 
( mmu `  ( A  x.  B )
)  =  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  ( A  x.  B ) } ) ) )
3431, 32, 33syl2anc 643 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( mmu `  ( A  x.  B
) )  =  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  ( A  x.  B ) } ) ) )
35 neg1cn 9999 . . . . . 6  |-  -u 1  e.  CC
3635a1i 11 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  -u 1  e.  CC )
37 fzfi 11238 . . . . . . 7  |-  ( 1 ... B )  e. 
Fin
38 prmnn 13009 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  p  e.  NN )
3938ssriv 3295 . . . . . . . . 9  |-  Prime  C_  NN
40 rabss2 3369 . . . . . . . . 9  |-  ( Prime  C_  NN  ->  { p  e.  Prime  |  p  ||  B }  C_  { p  e.  NN  |  p  ||  B } )
4139, 40ax-mp 8 . . . . . . . 8  |-  { p  e.  Prime  |  p  ||  B }  C_  { p  e.  NN  |  p  ||  B }
42 sgmss 20756 . . . . . . . . 9  |-  ( B  e.  NN  ->  { p  e.  NN  |  p  ||  B }  C_  ( 1 ... B ) )
4330, 42syl 16 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  { p  e.  NN  |  p  ||  B }  C_  ( 1 ... B ) )
4441, 43syl5ss 3302 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  { p  e.  Prime  |  p  ||  B }  C_  ( 1 ... B ) )
45 ssfi 7265 . . . . . . 7  |-  ( ( ( 1 ... B
)  e.  Fin  /\  { p  e.  Prime  |  p 
||  B }  C_  ( 1 ... B
) )  ->  { p  e.  Prime  |  p  ||  B }  e.  Fin )
4637, 44, 45sylancr 645 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  { p  e.  Prime  |  p  ||  B }  e.  Fin )
47 hashcl 11566 . . . . . 6  |-  ( { p  e.  Prime  |  p 
||  B }  e.  Fin  ->  ( # `  {
p  e.  Prime  |  p 
||  B } )  e.  NN0 )
4846, 47syl 16 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( # `  {
p  e.  Prime  |  p 
||  B } )  e.  NN0 )
49 fzfi 11238 . . . . . . 7  |-  ( 1 ... A )  e. 
Fin
50 rabss2 3369 . . . . . . . . 9  |-  ( Prime  C_  NN  ->  { p  e.  Prime  |  p  ||  A }  C_  { p  e.  NN  |  p  ||  A } )
5139, 50ax-mp 8 . . . . . . . 8  |-  { p  e.  Prime  |  p  ||  A }  C_  { p  e.  NN  |  p  ||  A }
52 sgmss 20756 . . . . . . . . 9  |-  ( A  e.  NN  ->  { p  e.  NN  |  p  ||  A }  C_  ( 1 ... A ) )
5329, 52syl 16 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  { p  e.  NN  |  p  ||  A }  C_  ( 1 ... A ) )
5451, 53syl5ss 3302 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  { p  e.  Prime  |  p  ||  A }  C_  ( 1 ... A ) )
55 ssfi 7265 . . . . . . 7  |-  ( ( ( 1 ... A
)  e.  Fin  /\  { p  e.  Prime  |  p 
||  A }  C_  ( 1 ... A
) )  ->  { p  e.  Prime  |  p  ||  A }  e.  Fin )
5649, 54, 55sylancr 645 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  { p  e.  Prime  |  p  ||  A }  e.  Fin )
57 hashcl 11566 . . . . . 6  |-  ( { p  e.  Prime  |  p 
||  A }  e.  Fin  ->  ( # `  {
p  e.  Prime  |  p 
||  A } )  e.  NN0 )
5856, 57syl 16 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( # `  {
p  e.  Prime  |  p 
||  A } )  e.  NN0 )
5936, 48, 58expaddd 11452 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( -u 1 ^ ( ( # `  { p  e.  Prime  |  p  ||  A }
)  +  ( # `  { p  e.  Prime  |  p  ||  B }
) ) )  =  ( ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) )  x.  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  B }
) ) ) )
60 simpr 448 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  (
( mmu `  A
)  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  /\  p  e. 
Prime )  ->  p  e. 
Prime )
61 simpl1 960 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  A  e.  NN )
6261nnzd 10306 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  A  e.  ZZ )
6362adantlr 696 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  (
( mmu `  A
)  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  /\  p  e. 
Prime )  ->  A  e.  ZZ )
64 simpl2 961 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  B  e.  NN )
6564nnzd 10306 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  p  e.  Prime )  ->  B  e.  ZZ )
6665adantlr 696 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  (
( mmu `  A
)  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  /\  p  e. 
Prime )  ->  B  e.  ZZ )
67 euclemma 13035 . . . . . . . . . 10  |-  ( ( p  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
p  ||  ( A  x.  B )  <->  ( p  ||  A  \/  p  ||  B ) ) )
6860, 63, 66, 67syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  (
( mmu `  A
)  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  /\  p  e. 
Prime )  ->  ( p 
||  ( A  x.  B )  <->  ( p  ||  A  \/  p  ||  B ) ) )
6968rabbidva 2890 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  { p  e.  Prime  |  p  ||  ( A  x.  B
) }  =  {
p  e.  Prime  |  ( p  ||  A  \/  p  ||  B ) } )
70 unrab 3555 . . . . . . . 8  |-  ( { p  e.  Prime  |  p 
||  A }  u.  { p  e.  Prime  |  p 
||  B } )  =  { p  e. 
Prime  |  ( p  ||  A  \/  p  ||  B ) }
7169, 70syl6eqr 2437 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  { p  e.  Prime  |  p  ||  ( A  x.  B
) }  =  ( { p  e.  Prime  |  p  ||  A }  u.  { p  e.  Prime  |  p  ||  B }
) )
7271fveq2d 5672 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( # `  {
p  e.  Prime  |  p 
||  ( A  x.  B ) } )  =  ( # `  ( { p  e.  Prime  |  p  ||  A }  u.  { p  e.  Prime  |  p  ||  B }
) ) )
73 inrab 3556 . . . . . . . 8  |-  ( { p  e.  Prime  |  p 
||  A }  i^i  { p  e.  Prime  |  p 
||  B } )  =  { p  e. 
Prime  |  ( p  ||  A  /\  p  ||  B ) }
74 nprmdvds1 13038 . . . . . . . . . . . 12  |-  ( p  e.  Prime  ->  -.  p  ||  1 )
7574adantl 453 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  (
( mmu `  A
)  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  /\  p  e. 
Prime )  ->  -.  p  ||  1 )
76 prmz 13010 . . . . . . . . . . . . . 14  |-  ( p  e.  Prime  ->  p  e.  ZZ )
7776adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  (
( mmu `  A
)  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  /\  p  e. 
Prime )  ->  p  e.  ZZ )
78 dvdsgcd 12970 . . . . . . . . . . . . 13  |-  ( ( p  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( p  ||  A  /\  p  ||  B )  ->  p  ||  ( A  gcd  B ) ) )
7977, 63, 66, 78syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  (
( mmu `  A
)  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  /\  p  e. 
Prime )  ->  ( ( p  ||  A  /\  p  ||  B )  ->  p  ||  ( A  gcd  B ) ) )
80 simpll3 998 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  (
( mmu `  A
)  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  /\  p  e. 
Prime )  ->  ( A  gcd  B )  =  1 )
8180breq2d 4165 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  (
( mmu `  A
)  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  /\  p  e. 
Prime )  ->  ( p 
||  ( A  gcd  B )  <->  p  ||  1 ) )
8279, 81sylibd 206 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  (
( mmu `  A
)  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  /\  p  e. 
Prime )  ->  ( ( p  ||  A  /\  p  ||  B )  ->  p  ||  1 ) )
8375, 82mtod 170 . . . . . . . . . 10  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  (
( mmu `  A
)  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  /\  p  e. 
Prime )  ->  -.  (
p  ||  A  /\  p  ||  B ) )
8483ralrimiva 2732 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  A. p  e.  Prime  -.  ( p  ||  A  /\  p  ||  B ) )
85 rabeq0 3592 . . . . . . . . 9  |-  ( { p  e.  Prime  |  ( p  ||  A  /\  p  ||  B ) }  =  (/)  <->  A. p  e.  Prime  -.  ( p  ||  A  /\  p  ||  B ) )
8684, 85sylibr 204 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  { p  e.  Prime  |  ( p 
||  A  /\  p  ||  B ) }  =  (/) )
8773, 86syl5eq 2431 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( {
p  e.  Prime  |  p 
||  A }  i^i  { p  e.  Prime  |  p 
||  B } )  =  (/) )
88 hashun 11583 . . . . . . 7  |-  ( ( { p  e.  Prime  |  p  ||  A }  e.  Fin  /\  { p  e.  Prime  |  p  ||  B }  e.  Fin  /\  ( { p  e. 
Prime  |  p  ||  A }  i^i  { p  e. 
Prime  |  p  ||  B } )  =  (/) )  ->  ( # `  ( { p  e.  Prime  |  p  ||  A }  u.  { p  e.  Prime  |  p  ||  B }
) )  =  ( ( # `  {
p  e.  Prime  |  p 
||  A } )  +  ( # `  {
p  e.  Prime  |  p 
||  B } ) ) )
8956, 46, 87, 88syl3anc 1184 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( # `  ( { p  e.  Prime  |  p  ||  A }  u.  { p  e.  Prime  |  p  ||  B }
) )  =  ( ( # `  {
p  e.  Prime  |  p 
||  A } )  +  ( # `  {
p  e.  Prime  |  p 
||  B } ) ) )
9072, 89eqtrd 2419 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( # `  {
p  e.  Prime  |  p 
||  ( A  x.  B ) } )  =  ( ( # `  { p  e.  Prime  |  p  ||  A }
)  +  ( # `  { p  e.  Prime  |  p  ||  B }
) ) )
9190oveq2d 6036 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  ( A  x.  B ) } ) )  =  ( -u
1 ^ ( (
# `  { p  e.  Prime  |  p  ||  A } )  +  (
# `  { p  e.  Prime  |  p  ||  B } ) ) ) )
92 simprl 733 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( mmu `  A )  =/=  0
)
93 muval2 20784 . . . . . 6  |-  ( ( A  e.  NN  /\  ( mmu `  A )  =/=  0 )  -> 
( mmu `  A
)  =  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  A }
) ) )
9429, 92, 93syl2anc 643 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( mmu `  A )  =  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  A } ) ) )
95 simprr 734 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( mmu `  B )  =/=  0
)
96 muval2 20784 . . . . . 6  |-  ( ( B  e.  NN  /\  ( mmu `  B )  =/=  0 )  -> 
( mmu `  B
)  =  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  B }
) ) )
9730, 95, 96syl2anc 643 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( mmu `  B )  =  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  B } ) ) )
9894, 97oveq12d 6038 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( (
mmu `  A )  x.  ( mmu `  B
) )  =  ( ( -u 1 ^ ( # `  {
p  e.  Prime  |  p 
||  A } ) )  x.  ( -u
1 ^ ( # `  { p  e.  Prime  |  p  ||  B }
) ) ) )
9959, 91, 983eqtr4rd 2430 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( (
mmu `  A )  x.  ( mmu `  B
) )  =  (
-u 1 ^ ( # `
 { p  e. 
Prime  |  p  ||  ( A  x.  B ) } ) ) )
10034, 99eqtr4d 2422 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  /\  ( ( mmu `  A )  =/=  0  /\  ( mmu `  B
)  =/=  0 ) )  ->  ( mmu `  ( A  x.  B
) )  =  ( ( mmu `  A
)  x.  ( mmu `  B ) ) )
10110, 28, 100pm2.61da2ne 2629 1  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  ( A  gcd  B )  =  1 )  ->  (
mmu `  ( A  x.  B ) )  =  ( ( mmu `  A )  x.  (
mmu `  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550   A.wral 2649   {crab 2653    u. cun 3261    i^i cin 3262    C_ wss 3263   (/)c0 3571   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   Fincfn 7045   CCcc 8921   0cc0 8923   1c1 8924    + caddc 8926    x. cmul 8928   -ucneg 9224   NNcn 9932   NN0cn0 10153   ZZcz 10214   ...cfz 10975   ^cexp 11309   #chash 11545    || cdivides 12779    gcd cgcd 12933   Primecprime 13006   mmucmu 20744
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-q 10507  df-rp 10545  df-fz 10976  df-fl 11129  df-mod 11178  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-dvds 12780  df-gcd 12934  df-prm 13007  df-pc 13138  df-mu 20750
  Copyright terms: Public domain W3C validator