Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvecrtol2 Unicode version

Theorem mvecrtol2 25477
Description: Moving a vector from the right member of an equation into the left member. (Contributed by FL, 12-Sep-2010.)
Hypotheses
Ref Expression
vwit.1  |-  0 w  =  (GId `  + w )
vwit.2  |-  + w  =  ( 1st `  ( 2nd `  R ) )
vwit.3  |-  - w  =  (  /g  `  + w )
vwit.4  |-  W  =  ran  + w
Assertion
Ref Expression
mvecrtol2  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  ( V1  =  ( V 2 + w V 3
)  <->  ( V1 - w V 2 )  =  V 3 ) )

Proof of Theorem mvecrtol2
StepHypRef Expression
1 vwit.2 . . . . . 6  |-  + w  =  ( 1st `  ( 2nd `  R ) )
21vecax1 25453 . . . . 5  |-  ( R  e.  Vec  ->  + w  e.  AbelOp )
3 ablogrpo 20951 . . . . 5  |-  ( + w  e.  AbelOp  ->  + w  e.  GrpOp )
42, 3syl 15 . . . 4  |-  ( R  e.  Vec  ->  + w  e.  GrpOp )
54adantr 451 . . 3  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  + w  e.  GrpOp )
6 simpr1 961 . . 3  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  V1  e.  W )
7 vwit.4 . . . . 5  |-  W  =  ran  + w
81, 7sum2vv 25462 . . . 4  |-  ( ( R  e.  Vec  /\  V 2  e.  W  /\  V 3  e.  W
)  ->  ( V 2 + w V 3
)  e.  W )
983adant3r1 1160 . . 3  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  ( V 2 + w V 3 )  e.  W
)
10 simpr2 962 . . 3  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  V 2  e.  W )
11 vwit.3 . . . 4  |-  - w  =  (  /g  `  + w )
127, 11grpodrcan 25375 . . 3  |-  ( ( + w  e.  GrpOp  /\  ( V1  e.  W  /\  ( V 2 + w V 3 )  e.  W  /\  V 2  e.  W ) )  -> 
( ( V1 - w V 2 )  =  ( ( V 2 + w V 3 ) - w V 2 )  <->  V1  =  ( V 2 + w V 3 ) ) )
135, 6, 9, 10, 12syl13anc 1184 . 2  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  (
( V1 - w V 2 )  =  ( ( V 2 + w V 3 ) - w V 2 )  <->  V1  =  ( V 2 + w V 3 ) ) )
141, 7addvecom 25466 . . . . . 6  |-  ( ( R  e.  Vec  /\  ( V 2  e.  W  /\  V 3  e.  W
) )  ->  ( V 2 + w V 3 )  =  ( V 3 + w V 2 ) )
15143adantr1 1114 . . . . 5  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  ( V 2 + w V 3 )  =  ( V 3 + w V 2 ) )
1615oveq1d 5873 . . . 4  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  (
( V 2 + w V 3 ) - w V 2 )  =  ( ( V 3 + w V 2 ) - w V 2 )
)
17 simpl 443 . . . . . . 7  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  R  e.  Vec  )
181, 7sum2vv 25462 . . . . . . . . . . . 12  |-  ( ( R  e.  Vec  /\  V 3  e.  W  /\  V 2  e.  W
)  ->  ( V 3 + w V 2
)  e.  W )
19183exp 1150 . . . . . . . . . . 11  |-  ( R  e.  Vec  ->  ( V 3  e.  W  ->  ( V 2  e.  W  ->  ( V 3 + w V 2 )  e.  W ) ) )
2019com3l 75 . . . . . . . . . 10  |-  ( V 3  e.  W  -> 
( V 2  e.  W  ->  ( R  e. 
Vec  ->  ( V 3 + w V 2 )  e.  W ) ) )
2120impcom 419 . . . . . . . . 9  |-  ( ( V 2  e.  W  /\  V 3  e.  W
)  ->  ( R  e.  Vec  ->  ( V 3 + w V 2
)  e.  W ) )
22213adant1 973 . . . . . . . 8  |-  ( (
V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
)  ->  ( R  e.  Vec  ->  ( V 3 + w V 2
)  e.  W ) )
2322impcom 419 . . . . . . 7  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  ( V 3 + w V 2 )  e.  W
)
24 vwit.1 . . . . . . . 8  |-  0 w  =  (GId `  + w )
25 eqid 2283 . . . . . . . 8  |-  ( inv `  + w )  =  ( inv `  + w )
2624, 1, 11, 7, 25sub2vec 25472 . . . . . . 7  |-  ( ( R  e.  Vec  /\  ( ( V 3 + w V 2 )  e.  W  /\  V 2  e.  W ) )  -> 
( ( V 3 + w V 2 ) - w V 2 )  =  ( ( V 3 + w V 2 ) + w
( ( inv `  + w ) `  V 2 ) ) )
2717, 23, 10, 26syl12anc 1180 . . . . . 6  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  (
( V 3 + w V 2 ) - w V 2 )  =  ( ( V 3 + w V 2 ) + w ( ( inv `  + w ) `  V 2 ) ) )
28 simpr3 963 . . . . . . . 8  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  V 3  e.  W )
291rneqi 4905 . . . . . . . . . . 11  |-  ran  + w  =  ran  ( 1st `  ( 2nd `  R
) )
307, 29eqtri 2303 . . . . . . . . . 10  |-  W  =  ran  ( 1st `  ( 2nd `  R ) )
311fveq2i 5528 . . . . . . . . . 10  |-  ( inv `  + w )  =  ( inv `  ( 1st `  ( 2nd `  R
) ) )
3230, 31claddinvvec 25460 . . . . . . . . 9  |-  ( ( R  e.  Vec  /\  V 2  e.  W
)  ->  ( ( inv `  + w ) `  V 2 )  e.  W )
33323ad2antr2 1121 . . . . . . . 8  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  (
( inv `  + w ) `  V 2 )  e.  W
)
3428, 10, 333jca 1132 . . . . . . 7  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  ( V 3  e.  W  /\  V 2  e.  W  /\  ( ( inv `  + w ) `  V 2 )  e.  W
) )
351, 7addvecass 25465 . . . . . . 7  |-  ( ( R  e.  Vec  /\  ( V 3  e.  W  /\  V 2  e.  W  /\  ( ( inv `  + w ) `  V 2 )  e.  W
) )  ->  ( V 3 + w ( V 2 + w (
( inv `  + w ) `  V 2 ) ) )  =  ( ( V 3 + w V 2 ) + w
( ( inv `  + w ) `  V 2 ) ) )
3634, 35syldan 456 . . . . . 6  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  ( V 3 + w ( V 2 + w (
( inv `  + w ) `  V 2 ) ) )  =  ( ( V 3 + w V 2 ) + w
( ( inv `  + w ) `  V 2 ) ) )
37 simp2 956 . . . . . . . . . 10  |-  ( (
V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
)  ->  V 2  e.  W )
3837, 37jca 518 . . . . . . . . 9  |-  ( (
V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
)  ->  ( V 2  e.  W  /\  V 2  e.  W
) )
3924, 1, 11, 7, 25sub2vec 25472 . . . . . . . . 9  |-  ( ( R  e.  Vec  /\  ( V 2  e.  W  /\  V 2  e.  W
) )  ->  ( V 2 - w V 2 )  =  ( V 2 + w
( ( inv `  + w ) `  V 2 ) ) )
4038, 39sylan2 460 . . . . . . . 8  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  ( V 2 - w V 2 )  =  ( V 2 + w
( ( inv `  + w ) `  V 2 ) ) )
4140eqcomd 2288 . . . . . . 7  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  ( V 2 + w (
( inv `  + w ) `  V 2 ) )  =  ( V 2 - w V 2 ) )
4241oveq2d 5874 . . . . . 6  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  ( V 3 + w ( V 2 + w (
( inv `  + w ) `  V 2 ) ) )  =  ( V 3 + w ( V 2 - w V 2 )
) )
4327, 36, 423eqtr2d 2321 . . . . 5  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  (
( V 3 + w V 2 ) - w V 2 )  =  ( V 3 + w ( V 2 - w V 2 )
) )
4424, 1, 11, 7vwit 25471 . . . . . . . 8  |-  ( ( R  e.  Vec  /\  V 2  e.  W
)  ->  ( V 2 - w V 2
)  =  0 w
)
45443ad2antr2 1121 . . . . . . 7  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  ( V 2 - w V 2 )  =  0 w )
4645oveq2d 5874 . . . . . 6  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  ( V 3 + w ( V 2 - w V 2 ) )  =  ( V 3 + w 0 w )
)
471, 7, 24addnull1 25463 . . . . . . 7  |-  ( ( R  e.  Vec  /\  V 3  e.  W
)  ->  ( V 3 + w 0 w
)  =  V 3
)
48473ad2antr3 1122 . . . . . 6  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  ( V 3 + w 0 w )  =  V 3 )
4946, 48eqtrd 2315 . . . . 5  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  ( V 3 + w ( V 2 - w V 2 ) )  =  V 3 )
5043, 49eqtrd 2315 . . . 4  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  (
( V 3 + w V 2 ) - w V 2 )  =  V 3 )
5116, 50eqtrd 2315 . . 3  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  (
( V 2 + w V 3 ) - w V 2 )  =  V 3 )
5251eqeq2d 2294 . 2  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  (
( V1 - w V 2 )  =  ( ( V 2 + w V 3 ) - w V 2 )  <->  ( V1 - w V 2 )  =  V 3 ) )
5313, 52bitr3d 246 1  |-  ( ( R  e.  Vec  /\  ( V1  e.  W  /\  V 2  e.  W  /\  V 3  e.  W
) )  ->  ( V1  =  ( V 2 + w V 3
)  <->  ( V1 - w V 2 )  =  V 3 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   ran crn 4690   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121   GrpOpcgr 20853  GIdcgi 20854   invcgn 20855    /g cgs 20856   AbelOpcablo 20948    Vec cvec 25449
This theorem is referenced by:  mulveczer  25479
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gdiv 20861  df-ablo 20949  df-vec 25450
  Copyright terms: Public domain W3C validator