MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrval2 Unicode version

Theorem mvrval2 16167
Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
mvrfval.v  |-  V  =  ( I mVar  R )
mvrfval.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
mvrfval.z  |-  .0.  =  ( 0g `  R )
mvrfval.o  |-  .1.  =  ( 1r `  R )
mvrfval.i  |-  ( ph  ->  I  e.  W )
mvrfval.r  |-  ( ph  ->  R  e.  Y )
mvrval.x  |-  ( ph  ->  X  e.  I )
mvrval2.f  |-  ( ph  ->  F  e.  D )
Assertion
Ref Expression
mvrval2  |-  ( ph  ->  ( ( V `  X ) `  F
)  =  if ( F  =  ( y  e.  I  |->  if ( y  =  X , 
1 ,  0 ) ) ,  .1.  ,  .0.  ) )
Distinct variable groups:    y, W    y, h, I    h, X, y
Allowed substitution hints:    ph( y, h)    D( y, h)    R( y, h)    .1. ( y, h)    F( y, h)    V( y, h)    W( h)    Y( y, h)    .0. ( y, h)

Proof of Theorem mvrval2
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 mvrfval.v . . . 4  |-  V  =  ( I mVar  R )
2 mvrfval.d . . . 4  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
3 mvrfval.z . . . 4  |-  .0.  =  ( 0g `  R )
4 mvrfval.o . . . 4  |-  .1.  =  ( 1r `  R )
5 mvrfval.i . . . 4  |-  ( ph  ->  I  e.  W )
6 mvrfval.r . . . 4  |-  ( ph  ->  R  e.  Y )
7 mvrval.x . . . 4  |-  ( ph  ->  X  e.  I )
81, 2, 3, 4, 5, 6, 7mvrval 16166 . . 3  |-  ( ph  ->  ( V `  X
)  =  ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  X , 
1 ,  0 ) ) ,  .1.  ,  .0.  ) ) )
98fveq1d 5527 . 2  |-  ( ph  ->  ( ( V `  X ) `  F
)  =  ( ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  X ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) ) `  F ) )
10 mvrval2.f . . 3  |-  ( ph  ->  F  e.  D )
11 eqeq1 2289 . . . . 5  |-  ( f  =  F  ->  (
f  =  ( y  e.  I  |->  if ( y  =  X , 
1 ,  0 ) )  <->  F  =  (
y  e.  I  |->  if ( y  =  X ,  1 ,  0 ) ) ) )
1211ifbid 3583 . . . 4  |-  ( f  =  F  ->  if ( f  =  ( y  e.  I  |->  if ( y  =  X ,  1 ,  0 ) ) ,  .1.  ,  .0.  )  =  if ( F  =  ( y  e.  I  |->  if ( y  =  X ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) )
13 eqid 2283 . . . 4  |-  ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  X , 
1 ,  0 ) ) ,  .1.  ,  .0.  ) )  =  ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  X ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) )
14 fvex 5539 . . . . . 6  |-  ( 1r
`  R )  e. 
_V
154, 14eqeltri 2353 . . . . 5  |-  .1.  e.  _V
16 fvex 5539 . . . . . 6  |-  ( 0g
`  R )  e. 
_V
173, 16eqeltri 2353 . . . . 5  |-  .0.  e.  _V
1815, 17ifex 3623 . . . 4  |-  if ( F  =  ( y  e.  I  |->  if ( y  =  X , 
1 ,  0 ) ) ,  .1.  ,  .0.  )  e.  _V
1912, 13, 18fvmpt 5602 . . 3  |-  ( F  e.  D  ->  (
( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  X ,  1 ,  0 ) ) ,  .1.  ,  .0.  )
) `  F )  =  if ( F  =  ( y  e.  I  |->  if ( y  =  X ,  1 ,  0 ) ) ,  .1.  ,  .0.  )
)
2010, 19syl 15 . 2  |-  ( ph  ->  ( ( f  e.  D  |->  if ( f  =  ( y  e.  I  |->  if ( y  =  X ,  1 ,  0 ) ) ,  .1.  ,  .0.  ) ) `  F
)  =  if ( F  =  ( y  e.  I  |->  if ( y  =  X , 
1 ,  0 ) ) ,  .1.  ,  .0.  ) )
219, 20eqtrd 2315 1  |-  ( ph  ->  ( ( V `  X ) `  F
)  =  if ( F  =  ( y  e.  I  |->  if ( y  =  X , 
1 ,  0 ) ) ,  .1.  ,  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788   ifcif 3565    e. cmpt 4077   `'ccnv 4688   "cima 4692   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   Fincfn 6863   0cc0 8737   1c1 8738   NNcn 9746   NN0cn0 9965   0gc0g 13400   1rcur 15339   mVar cmvr 16088
This theorem is referenced by:  mvrid  16168  mvrf1  16170  mvrcl  16193
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-mvr 16099
  Copyright terms: Public domain W3C validator