Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpclall Structured version   Unicode version

Theorem mzpclall 26784
Description: The set of all functions with the signature of a polynomial is a polynomially closed set. This is a lemma to show that the intersection in df-mzp 26781 is well-defined. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpclall  |-  ( V  e.  _V  ->  ( ZZ  ^m  ( ZZ  ^m  V ) )  e.  (mzPolyCld `  V )
)

Proof of Theorem mzpclall
Dummy variables  v 
f  g  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6089 . . . 4  |-  ( v  =  V  ->  ( ZZ  ^m  v )  =  ( ZZ  ^m  V
) )
21oveq2d 6097 . . 3  |-  ( v  =  V  ->  ( ZZ  ^m  ( ZZ  ^m  v ) )  =  ( ZZ  ^m  ( ZZ  ^m  V ) ) )
3 fveq2 5728 . . 3  |-  ( v  =  V  ->  (mzPolyCld `  v )  =  (mzPolyCld `  V ) )
42, 3eleq12d 2504 . 2  |-  ( v  =  V  ->  (
( ZZ  ^m  ( ZZ  ^m  v ) )  e.  (mzPolyCld `  v )  <->  ( ZZ  ^m  ( ZZ 
^m  V ) )  e.  (mzPolyCld `  V )
) )
5 ssid 3367 . . 3  |-  ( ZZ 
^m  ( ZZ  ^m  v ) )  C_  ( ZZ  ^m  ( ZZ  ^m  v ) )
6 ovex 6106 . . . . . . 7  |-  ( ZZ 
^m  v )  e. 
_V
7 zex 10291 . . . . . . 7  |-  ZZ  e.  _V
86, 7constmap 26767 . . . . . 6  |-  ( f  e.  ZZ  ->  (
( ZZ  ^m  v
)  X.  { f } )  e.  ( ZZ  ^m  ( ZZ 
^m  v ) ) )
98rgen 2771 . . . . 5  |-  A. f  e.  ZZ  ( ( ZZ 
^m  v )  X. 
{ f } )  e.  ( ZZ  ^m  ( ZZ  ^m  v
) )
10 vex 2959 . . . . . . . . . . 11  |-  v  e. 
_V
117, 10elmap 7042 . . . . . . . . . 10  |-  ( g  e.  ( ZZ  ^m  v )  <->  g :
v --> ZZ )
12 ffvelrn 5868 . . . . . . . . . 10  |-  ( ( g : v --> ZZ 
/\  f  e.  v )  ->  ( g `  f )  e.  ZZ )
1311, 12sylanb 459 . . . . . . . . 9  |-  ( ( g  e.  ( ZZ 
^m  v )  /\  f  e.  v )  ->  ( g `  f
)  e.  ZZ )
1413ancoms 440 . . . . . . . 8  |-  ( ( f  e.  v  /\  g  e.  ( ZZ  ^m  v ) )  -> 
( g `  f
)  e.  ZZ )
15 eqid 2436 . . . . . . . 8  |-  ( g  e.  ( ZZ  ^m  v )  |->  ( g `
 f ) )  =  ( g  e.  ( ZZ  ^m  v
)  |->  ( g `  f ) )
1614, 15fmptd 5893 . . . . . . 7  |-  ( f  e.  v  ->  (
g  e.  ( ZZ 
^m  v )  |->  ( g `  f ) ) : ( ZZ 
^m  v ) --> ZZ )
177, 6elmap 7042 . . . . . . 7  |-  ( ( g  e.  ( ZZ 
^m  v )  |->  ( g `  f ) )  e.  ( ZZ 
^m  ( ZZ  ^m  v ) )  <->  ( g  e.  ( ZZ  ^m  v
)  |->  ( g `  f ) ) : ( ZZ  ^m  v
) --> ZZ )
1816, 17sylibr 204 . . . . . 6  |-  ( f  e.  v  ->  (
g  e.  ( ZZ 
^m  v )  |->  ( g `  f ) )  e.  ( ZZ 
^m  ( ZZ  ^m  v ) ) )
1918rgen 2771 . . . . 5  |-  A. f  e.  v  ( g  e.  ( ZZ  ^m  v
)  |->  ( g `  f ) )  e.  ( ZZ  ^m  ( ZZ  ^m  v ) )
209, 19pm3.2i 442 . . . 4  |-  ( A. f  e.  ZZ  (
( ZZ  ^m  v
)  X.  { f } )  e.  ( ZZ  ^m  ( ZZ 
^m  v ) )  /\  A. f  e.  v  ( g  e.  ( ZZ  ^m  v
)  |->  ( g `  f ) )  e.  ( ZZ  ^m  ( ZZ  ^m  v ) ) )
21 zaddcl 10317 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  +  b )  e.  ZZ )
2221adantl 453 . . . . . . . 8  |-  ( ( ( f : ( ZZ  ^m  v ) --> ZZ  /\  g : ( ZZ  ^m  v
) --> ZZ )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  ( a  +  b )  e.  ZZ )
23 simpl 444 . . . . . . . 8  |-  ( ( f : ( ZZ 
^m  v ) --> ZZ 
/\  g : ( ZZ  ^m  v ) --> ZZ )  ->  f : ( ZZ  ^m  v ) --> ZZ )
24 simpr 448 . . . . . . . 8  |-  ( ( f : ( ZZ 
^m  v ) --> ZZ 
/\  g : ( ZZ  ^m  v ) --> ZZ )  ->  g : ( ZZ  ^m  v ) --> ZZ )
256a1i 11 . . . . . . . 8  |-  ( ( f : ( ZZ 
^m  v ) --> ZZ 
/\  g : ( ZZ  ^m  v ) --> ZZ )  ->  ( ZZ  ^m  v )  e. 
_V )
26 inidm 3550 . . . . . . . 8  |-  ( ( ZZ  ^m  v )  i^i  ( ZZ  ^m  v ) )  =  ( ZZ  ^m  v
)
2722, 23, 24, 25, 25, 26off 6320 . . . . . . 7  |-  ( ( f : ( ZZ 
^m  v ) --> ZZ 
/\  g : ( ZZ  ^m  v ) --> ZZ )  ->  (
f  o F  +  g ) : ( ZZ  ^m  v ) --> ZZ )
28 zmulcl 10324 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  x.  b
)  e.  ZZ )
2928adantl 453 . . . . . . . 8  |-  ( ( ( f : ( ZZ  ^m  v ) --> ZZ  /\  g : ( ZZ  ^m  v
) --> ZZ )  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  ( a  x.  b )  e.  ZZ )
3029, 23, 24, 25, 25, 26off 6320 . . . . . . 7  |-  ( ( f : ( ZZ 
^m  v ) --> ZZ 
/\  g : ( ZZ  ^m  v ) --> ZZ )  ->  (
f  o F  x.  g ) : ( ZZ  ^m  v ) --> ZZ )
3127, 30jca 519 . . . . . 6  |-  ( ( f : ( ZZ 
^m  v ) --> ZZ 
/\  g : ( ZZ  ^m  v ) --> ZZ )  ->  (
( f  o F  +  g ) : ( ZZ  ^m  v
) --> ZZ  /\  (
f  o F  x.  g ) : ( ZZ  ^m  v ) --> ZZ ) )
327, 6elmap 7042 . . . . . . 7  |-  ( f  e.  ( ZZ  ^m  ( ZZ  ^m  v
) )  <->  f :
( ZZ  ^m  v
) --> ZZ )
337, 6elmap 7042 . . . . . . 7  |-  ( g  e.  ( ZZ  ^m  ( ZZ  ^m  v
) )  <->  g :
( ZZ  ^m  v
) --> ZZ )
3432, 33anbi12i 679 . . . . . 6  |-  ( ( f  e.  ( ZZ 
^m  ( ZZ  ^m  v ) )  /\  g  e.  ( ZZ  ^m  ( ZZ  ^m  v
) ) )  <->  ( f : ( ZZ  ^m  v ) --> ZZ  /\  g : ( ZZ  ^m  v ) --> ZZ ) )
357, 6elmap 7042 . . . . . . 7  |-  ( ( f  o F  +  g )  e.  ( ZZ  ^m  ( ZZ 
^m  v ) )  <-> 
( f  o F  +  g ) : ( ZZ  ^m  v
) --> ZZ )
367, 6elmap 7042 . . . . . . 7  |-  ( ( f  o F  x.  g )  e.  ( ZZ  ^m  ( ZZ 
^m  v ) )  <-> 
( f  o F  x.  g ) : ( ZZ  ^m  v
) --> ZZ )
3735, 36anbi12i 679 . . . . . 6  |-  ( ( ( f  o F  +  g )  e.  ( ZZ  ^m  ( ZZ  ^m  v ) )  /\  ( f  o F  x.  g )  e.  ( ZZ  ^m  ( ZZ  ^m  v
) ) )  <->  ( (
f  o F  +  g ) : ( ZZ  ^m  v ) --> ZZ  /\  ( f  o F  x.  g
) : ( ZZ 
^m  v ) --> ZZ ) )
3831, 34, 373imtr4i 258 . . . . 5  |-  ( ( f  e.  ( ZZ 
^m  ( ZZ  ^m  v ) )  /\  g  e.  ( ZZ  ^m  ( ZZ  ^m  v
) ) )  -> 
( ( f  o F  +  g )  e.  ( ZZ  ^m  ( ZZ  ^m  v
) )  /\  (
f  o F  x.  g )  e.  ( ZZ  ^m  ( ZZ 
^m  v ) ) ) )
3938rgen2a 2772 . . . 4  |-  A. f  e.  ( ZZ  ^m  ( ZZ  ^m  v ) ) A. g  e.  ( ZZ  ^m  ( ZZ 
^m  v ) ) ( ( f  o F  +  g )  e.  ( ZZ  ^m  ( ZZ  ^m  v
) )  /\  (
f  o F  x.  g )  e.  ( ZZ  ^m  ( ZZ 
^m  v ) ) )
4020, 39pm3.2i 442 . . 3  |-  ( ( A. f  e.  ZZ  ( ( ZZ  ^m  v )  X.  {
f } )  e.  ( ZZ  ^m  ( ZZ  ^m  v ) )  /\  A. f  e.  v  ( g  e.  ( ZZ  ^m  v
)  |->  ( g `  f ) )  e.  ( ZZ  ^m  ( ZZ  ^m  v ) ) )  /\  A. f  e.  ( ZZ  ^m  ( ZZ  ^m  v ) ) A. g  e.  ( ZZ  ^m  ( ZZ 
^m  v ) ) ( ( f  o F  +  g )  e.  ( ZZ  ^m  ( ZZ  ^m  v
) )  /\  (
f  o F  x.  g )  e.  ( ZZ  ^m  ( ZZ 
^m  v ) ) ) )
41 elmzpcl 26783 . . . 4  |-  ( v  e.  _V  ->  (
( ZZ  ^m  ( ZZ  ^m  v ) )  e.  (mzPolyCld `  v )  <->  ( ( ZZ  ^m  ( ZZ  ^m  v ) ) 
C_  ( ZZ  ^m  ( ZZ  ^m  v
) )  /\  (
( A. f  e.  ZZ  ( ( ZZ 
^m  v )  X. 
{ f } )  e.  ( ZZ  ^m  ( ZZ  ^m  v
) )  /\  A. f  e.  v  (
g  e.  ( ZZ 
^m  v )  |->  ( g `  f ) )  e.  ( ZZ 
^m  ( ZZ  ^m  v ) ) )  /\  A. f  e.  ( ZZ  ^m  ( ZZ  ^m  v ) ) A. g  e.  ( ZZ  ^m  ( ZZ 
^m  v ) ) ( ( f  o F  +  g )  e.  ( ZZ  ^m  ( ZZ  ^m  v
) )  /\  (
f  o F  x.  g )  e.  ( ZZ  ^m  ( ZZ 
^m  v ) ) ) ) ) ) )
4210, 41ax-mp 8 . . 3  |-  ( ( ZZ  ^m  ( ZZ 
^m  v ) )  e.  (mzPolyCld `  v )  <->  ( ( ZZ  ^m  ( ZZ  ^m  v ) ) 
C_  ( ZZ  ^m  ( ZZ  ^m  v
) )  /\  (
( A. f  e.  ZZ  ( ( ZZ 
^m  v )  X. 
{ f } )  e.  ( ZZ  ^m  ( ZZ  ^m  v
) )  /\  A. f  e.  v  (
g  e.  ( ZZ 
^m  v )  |->  ( g `  f ) )  e.  ( ZZ 
^m  ( ZZ  ^m  v ) ) )  /\  A. f  e.  ( ZZ  ^m  ( ZZ  ^m  v ) ) A. g  e.  ( ZZ  ^m  ( ZZ 
^m  v ) ) ( ( f  o F  +  g )  e.  ( ZZ  ^m  ( ZZ  ^m  v
) )  /\  (
f  o F  x.  g )  e.  ( ZZ  ^m  ( ZZ 
^m  v ) ) ) ) ) )
435, 40, 42mpbir2an 887 . 2  |-  ( ZZ 
^m  ( ZZ  ^m  v ) )  e.  (mzPolyCld `  v )
444, 43vtoclg 3011 1  |-  ( V  e.  _V  ->  ( ZZ  ^m  ( ZZ  ^m  V ) )  e.  (mzPolyCld `  V )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   _Vcvv 2956    C_ wss 3320   {csn 3814    e. cmpt 4266    X. cxp 4876   -->wf 5450   ` cfv 5454  (class class class)co 6081    o Fcof 6303    ^m cmap 7018    + caddc 8993    x. cmul 8995   ZZcz 10282  mzPolyCldcmzpcl 26778
This theorem is referenced by:  mzpcln0  26785  mzpincl  26791  mzpf  26793
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-mzpcl 26780
  Copyright terms: Public domain W3C validator