Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpexpmpt Unicode version

Theorem mzpexpmpt 26823
Description: Raise a polynomial function to a (fixed) exponent. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzpexpmpt  |-  ( ( ( x  e.  ( ZZ  ^m  V ) 
|->  A )  e.  (mzPoly `  V )  /\  D  e.  NN0 )  ->  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ D ) )  e.  (mzPoly `  V ) )
Distinct variable groups:    x, V    x, D
Allowed substitution hint:    A( x)

Proof of Theorem mzpexpmpt
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5866 . . . . . 6  |-  ( a  =  0  ->  ( A ^ a )  =  ( A ^ 0 ) )
21mpteq2dv 4107 . . . . 5  |-  ( a  =  0  ->  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ a ) )  =  ( x  e.  ( ZZ  ^m  V )  |->  ( A ^ 0 ) ) )
32eleq1d 2349 . . . 4  |-  ( a  =  0  ->  (
( x  e.  ( ZZ  ^m  V ) 
|->  ( A ^ a
) )  e.  (mzPoly `  V )  <->  ( x  e.  ( ZZ  ^m  V
)  |->  ( A ^
0 ) )  e.  (mzPoly `  V )
) )
43imbi2d 307 . . 3  |-  ( a  =  0  ->  (
( ( x  e.  ( ZZ  ^m  V
)  |->  A )  e.  (mzPoly `  V )  ->  ( x  e.  ( ZZ  ^m  V ) 
|->  ( A ^ a
) )  e.  (mzPoly `  V ) )  <->  ( (
x  e.  ( ZZ 
^m  V )  |->  A )  e.  (mzPoly `  V )  ->  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ 0 ) )  e.  (mzPoly `  V ) ) ) )
5 oveq2 5866 . . . . . 6  |-  ( a  =  b  ->  ( A ^ a )  =  ( A ^ b
) )
65mpteq2dv 4107 . . . . 5  |-  ( a  =  b  ->  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ a ) )  =  ( x  e.  ( ZZ  ^m  V )  |->  ( A ^ b ) ) )
76eleq1d 2349 . . . 4  |-  ( a  =  b  ->  (
( x  e.  ( ZZ  ^m  V ) 
|->  ( A ^ a
) )  e.  (mzPoly `  V )  <->  ( x  e.  ( ZZ  ^m  V
)  |->  ( A ^
b ) )  e.  (mzPoly `  V )
) )
87imbi2d 307 . . 3  |-  ( a  =  b  ->  (
( ( x  e.  ( ZZ  ^m  V
)  |->  A )  e.  (mzPoly `  V )  ->  ( x  e.  ( ZZ  ^m  V ) 
|->  ( A ^ a
) )  e.  (mzPoly `  V ) )  <->  ( (
x  e.  ( ZZ 
^m  V )  |->  A )  e.  (mzPoly `  V )  ->  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ b ) )  e.  (mzPoly `  V ) ) ) )
9 oveq2 5866 . . . . . 6  |-  ( a  =  ( b  +  1 )  ->  ( A ^ a )  =  ( A ^ (
b  +  1 ) ) )
109mpteq2dv 4107 . . . . 5  |-  ( a  =  ( b  +  1 )  ->  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ a ) )  =  ( x  e.  ( ZZ  ^m  V )  |->  ( A ^ ( b  +  1 ) ) ) )
1110eleq1d 2349 . . . 4  |-  ( a  =  ( b  +  1 )  ->  (
( x  e.  ( ZZ  ^m  V ) 
|->  ( A ^ a
) )  e.  (mzPoly `  V )  <->  ( x  e.  ( ZZ  ^m  V
)  |->  ( A ^
( b  +  1 ) ) )  e.  (mzPoly `  V )
) )
1211imbi2d 307 . . 3  |-  ( a  =  ( b  +  1 )  ->  (
( ( x  e.  ( ZZ  ^m  V
)  |->  A )  e.  (mzPoly `  V )  ->  ( x  e.  ( ZZ  ^m  V ) 
|->  ( A ^ a
) )  e.  (mzPoly `  V ) )  <->  ( (
x  e.  ( ZZ 
^m  V )  |->  A )  e.  (mzPoly `  V )  ->  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ ( b  +  1 ) ) )  e.  (mzPoly `  V ) ) ) )
13 oveq2 5866 . . . . . 6  |-  ( a  =  D  ->  ( A ^ a )  =  ( A ^ D
) )
1413mpteq2dv 4107 . . . . 5  |-  ( a  =  D  ->  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ a ) )  =  ( x  e.  ( ZZ  ^m  V )  |->  ( A ^ D ) ) )
1514eleq1d 2349 . . . 4  |-  ( a  =  D  ->  (
( x  e.  ( ZZ  ^m  V ) 
|->  ( A ^ a
) )  e.  (mzPoly `  V )  <->  ( x  e.  ( ZZ  ^m  V
)  |->  ( A ^ D ) )  e.  (mzPoly `  V )
) )
1615imbi2d 307 . . 3  |-  ( a  =  D  ->  (
( ( x  e.  ( ZZ  ^m  V
)  |->  A )  e.  (mzPoly `  V )  ->  ( x  e.  ( ZZ  ^m  V ) 
|->  ( A ^ a
) )  e.  (mzPoly `  V ) )  <->  ( (
x  e.  ( ZZ 
^m  V )  |->  A )  e.  (mzPoly `  V )  ->  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ D ) )  e.  (mzPoly `  V ) ) ) )
17 mzpf 26814 . . . . . . 7  |-  ( ( x  e.  ( ZZ 
^m  V )  |->  A )  e.  (mzPoly `  V )  ->  (
x  e.  ( ZZ 
^m  V )  |->  A ) : ( ZZ 
^m  V ) --> ZZ )
18 zsscn 10032 . . . . . . 7  |-  ZZ  C_  CC
19 fss 5397 . . . . . . 7  |-  ( ( ( x  e.  ( ZZ  ^m  V ) 
|->  A ) : ( ZZ  ^m  V ) --> ZZ  /\  ZZ  C_  CC )  ->  ( x  e.  ( ZZ  ^m  V )  |->  A ) : ( ZZ  ^m  V ) --> CC )
2017, 18, 19sylancl 643 . . . . . 6  |-  ( ( x  e.  ( ZZ 
^m  V )  |->  A )  e.  (mzPoly `  V )  ->  (
x  e.  ( ZZ 
^m  V )  |->  A ) : ( ZZ 
^m  V ) --> CC )
21 eqid 2283 . . . . . . 7  |-  ( x  e.  ( ZZ  ^m  V )  |->  A )  =  ( x  e.  ( ZZ  ^m  V
)  |->  A )
2221fmpt 5681 . . . . . 6  |-  ( A. x  e.  ( ZZ  ^m  V ) A  e.  CC  <->  ( x  e.  ( ZZ  ^m  V
)  |->  A ) : ( ZZ  ^m  V
) --> CC )
2320, 22sylibr 203 . . . . 5  |-  ( ( x  e.  ( ZZ 
^m  V )  |->  A )  e.  (mzPoly `  V )  ->  A. x  e.  ( ZZ  ^m  V
) A  e.  CC )
24 nfra1 2593 . . . . . 6  |-  F/ x A. x  e.  ( ZZ  ^m  V ) A  e.  CC
25 rsp 2603 . . . . . . . 8  |-  ( A. x  e.  ( ZZ  ^m  V ) A  e.  CC  ->  ( x  e.  ( ZZ  ^m  V
)  ->  A  e.  CC ) )
2625imp 418 . . . . . . 7  |-  ( ( A. x  e.  ( ZZ  ^m  V ) A  e.  CC  /\  x  e.  ( ZZ  ^m  V ) )  ->  A  e.  CC )
2726exp0d 11239 . . . . . 6  |-  ( ( A. x  e.  ( ZZ  ^m  V ) A  e.  CC  /\  x  e.  ( ZZ  ^m  V ) )  -> 
( A ^ 0 )  =  1 )
2824, 27mpteq2da 4105 . . . . 5  |-  ( A. x  e.  ( ZZ  ^m  V ) A  e.  CC  ->  ( x  e.  ( ZZ  ^m  V
)  |->  ( A ^
0 ) )  =  ( x  e.  ( ZZ  ^m  V ) 
|->  1 ) )
2923, 28syl 15 . . . 4  |-  ( ( x  e.  ( ZZ 
^m  V )  |->  A )  e.  (mzPoly `  V )  ->  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ 0 ) )  =  ( x  e.  ( ZZ  ^m  V )  |->  1 ) )
30 elfvex 5555 . . . . 5  |-  ( ( x  e.  ( ZZ 
^m  V )  |->  A )  e.  (mzPoly `  V )  ->  V  e.  _V )
31 1z 10053 . . . . 5  |-  1  e.  ZZ
32 mzpconstmpt 26818 . . . . 5  |-  ( ( V  e.  _V  /\  1  e.  ZZ )  ->  ( x  e.  ( ZZ  ^m  V ) 
|->  1 )  e.  (mzPoly `  V ) )
3330, 31, 32sylancl 643 . . . 4  |-  ( ( x  e.  ( ZZ 
^m  V )  |->  A )  e.  (mzPoly `  V )  ->  (
x  e.  ( ZZ 
^m  V )  |->  1 )  e.  (mzPoly `  V ) )
3429, 33eqeltrd 2357 . . 3  |-  ( ( x  e.  ( ZZ 
^m  V )  |->  A )  e.  (mzPoly `  V )  ->  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ 0 ) )  e.  (mzPoly `  V ) )
35233ad2ant2 977 . . . . . . 7  |-  ( ( b  e.  NN0  /\  ( x  e.  ( ZZ  ^m  V )  |->  A )  e.  (mzPoly `  V )  /\  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ b ) )  e.  (mzPoly `  V ) )  ->  A. x  e.  ( ZZ  ^m  V ) A  e.  CC )
36 simp1 955 . . . . . . 7  |-  ( ( b  e.  NN0  /\  ( x  e.  ( ZZ  ^m  V )  |->  A )  e.  (mzPoly `  V )  /\  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ b ) )  e.  (mzPoly `  V ) )  -> 
b  e.  NN0 )
37 nfv 1605 . . . . . . . . 9  |-  F/ x  b  e.  NN0
3824, 37nfan 1771 . . . . . . . 8  |-  F/ x
( A. x  e.  ( ZZ  ^m  V
) A  e.  CC  /\  b  e.  NN0 )
3926adantlr 695 . . . . . . . . 9  |-  ( ( ( A. x  e.  ( ZZ  ^m  V
) A  e.  CC  /\  b  e.  NN0 )  /\  x  e.  ( ZZ  ^m  V ) )  ->  A  e.  CC )
40 simplr 731 . . . . . . . . 9  |-  ( ( ( A. x  e.  ( ZZ  ^m  V
) A  e.  CC  /\  b  e.  NN0 )  /\  x  e.  ( ZZ  ^m  V ) )  ->  b  e.  NN0 )
4139, 40expp1d 11246 . . . . . . . 8  |-  ( ( ( A. x  e.  ( ZZ  ^m  V
) A  e.  CC  /\  b  e.  NN0 )  /\  x  e.  ( ZZ  ^m  V ) )  ->  ( A ^
( b  +  1 ) )  =  ( ( A ^ b
)  x.  A ) )
4238, 41mpteq2da 4105 . . . . . . 7  |-  ( ( A. x  e.  ( ZZ  ^m  V ) A  e.  CC  /\  b  e.  NN0 )  -> 
( x  e.  ( ZZ  ^m  V ) 
|->  ( A ^ (
b  +  1 ) ) )  =  ( x  e.  ( ZZ 
^m  V )  |->  ( ( A ^ b
)  x.  A ) ) )
4335, 36, 42syl2anc 642 . . . . . 6  |-  ( ( b  e.  NN0  /\  ( x  e.  ( ZZ  ^m  V )  |->  A )  e.  (mzPoly `  V )  /\  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ b ) )  e.  (mzPoly `  V ) )  -> 
( x  e.  ( ZZ  ^m  V ) 
|->  ( A ^ (
b  +  1 ) ) )  =  ( x  e.  ( ZZ 
^m  V )  |->  ( ( A ^ b
)  x.  A ) ) )
44 simp3 957 . . . . . . 7  |-  ( ( b  e.  NN0  /\  ( x  e.  ( ZZ  ^m  V )  |->  A )  e.  (mzPoly `  V )  /\  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ b ) )  e.  (mzPoly `  V ) )  -> 
( x  e.  ( ZZ  ^m  V ) 
|->  ( A ^ b
) )  e.  (mzPoly `  V ) )
45 simp2 956 . . . . . . 7  |-  ( ( b  e.  NN0  /\  ( x  e.  ( ZZ  ^m  V )  |->  A )  e.  (mzPoly `  V )  /\  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ b ) )  e.  (mzPoly `  V ) )  -> 
( x  e.  ( ZZ  ^m  V ) 
|->  A )  e.  (mzPoly `  V ) )
46 mzpmulmpt 26820 . . . . . . 7  |-  ( ( ( x  e.  ( ZZ  ^m  V ) 
|->  ( A ^ b
) )  e.  (mzPoly `  V )  /\  (
x  e.  ( ZZ 
^m  V )  |->  A )  e.  (mzPoly `  V ) )  -> 
( x  e.  ( ZZ  ^m  V ) 
|->  ( ( A ^
b )  x.  A
) )  e.  (mzPoly `  V ) )
4744, 45, 46syl2anc 642 . . . . . 6  |-  ( ( b  e.  NN0  /\  ( x  e.  ( ZZ  ^m  V )  |->  A )  e.  (mzPoly `  V )  /\  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ b ) )  e.  (mzPoly `  V ) )  -> 
( x  e.  ( ZZ  ^m  V ) 
|->  ( ( A ^
b )  x.  A
) )  e.  (mzPoly `  V ) )
4843, 47eqeltrd 2357 . . . . 5  |-  ( ( b  e.  NN0  /\  ( x  e.  ( ZZ  ^m  V )  |->  A )  e.  (mzPoly `  V )  /\  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ b ) )  e.  (mzPoly `  V ) )  -> 
( x  e.  ( ZZ  ^m  V ) 
|->  ( A ^ (
b  +  1 ) ) )  e.  (mzPoly `  V ) )
49483exp 1150 . . . 4  |-  ( b  e.  NN0  ->  ( ( x  e.  ( ZZ 
^m  V )  |->  A )  e.  (mzPoly `  V )  ->  (
( x  e.  ( ZZ  ^m  V ) 
|->  ( A ^ b
) )  e.  (mzPoly `  V )  ->  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ ( b  +  1 ) ) )  e.  (mzPoly `  V ) ) ) )
5049a2d 23 . . 3  |-  ( b  e.  NN0  ->  ( ( ( x  e.  ( ZZ  ^m  V ) 
|->  A )  e.  (mzPoly `  V )  ->  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ b ) )  e.  (mzPoly `  V ) )  -> 
( ( x  e.  ( ZZ  ^m  V
)  |->  A )  e.  (mzPoly `  V )  ->  ( x  e.  ( ZZ  ^m  V ) 
|->  ( A ^ (
b  +  1 ) ) )  e.  (mzPoly `  V ) ) ) )
514, 8, 12, 16, 34, 50nn0ind 10108 . 2  |-  ( D  e.  NN0  ->  ( ( x  e.  ( ZZ 
^m  V )  |->  A )  e.  (mzPoly `  V )  ->  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ D ) )  e.  (mzPoly `  V ) ) )
5251impcom 419 1  |-  ( ( ( x  e.  ( ZZ  ^m  V ) 
|->  A )  e.  (mzPoly `  V )  /\  D  e.  NN0 )  ->  (
x  e.  ( ZZ 
^m  V )  |->  ( A ^ D ) )  e.  (mzPoly `  V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    C_ wss 3152    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   CCcc 8735   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742   NN0cn0 9965   ZZcz 10024   ^cexp 11104  mzPolycmzp 26800
This theorem is referenced by:  diophin  26852  rmydioph  27107  rmxdioph  27109  expdiophlem2  27115
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-seq 11047  df-exp 11105  df-mzpcl 26801  df-mzp 26802
  Copyright terms: Public domain W3C validator