Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpsubst Structured version   Unicode version

Theorem mzpsubst 26819
Description: Substituting polynomials for the variables of a polynomial results in a polynomial.  G is expected to depend on  y and provide the polynomials which are being substituted. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzpsubst  |-  ( ( W  e.  _V  /\  F  e.  (mzPoly `  V
)  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  ->  ( x  e.  ( ZZ  ^m  W
)  |->  ( F `  ( y  e.  V  |->  ( G `  x
) ) ) )  e.  (mzPoly `  W
) )
Distinct variable groups:    x, W, y    x, F    x, V, y    x, G
Allowed substitution hints:    F( y)    G( y)

Proof of Theorem mzpsubst
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 958 . 2  |-  ( ( W  e.  _V  /\  F  e.  (mzPoly `  V
)  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  ->  W  e.  _V )
2 elfvex 5761 . . 3  |-  ( F  e.  (mzPoly `  V
)  ->  V  e.  _V )
323ad2ant2 980 . 2  |-  ( ( W  e.  _V  /\  F  e.  (mzPoly `  V
)  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  ->  V  e.  _V )
4 simp3 960 . 2  |-  ( ( W  e.  _V  /\  F  e.  (mzPoly `  V
)  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  ->  A. y  e.  V  G  e.  (mzPoly `  W
) )
5 simp2 959 . 2  |-  ( ( W  e.  _V  /\  F  e.  (mzPoly `  V
)  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  ->  F  e.  (mzPoly `  V ) )
6 simpr 449 . . . . . . 7  |-  ( ( ( ( W  e. 
_V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  b  e.  ZZ )  /\  x  e.  ( ZZ  ^m  W ) )  ->  x  e.  ( ZZ  ^m  W ) )
7 simpll3 999 . . . . . . 7  |-  ( ( ( ( W  e. 
_V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  b  e.  ZZ )  /\  x  e.  ( ZZ  ^m  W ) )  ->  A. y  e.  V  G  e.  (mzPoly `  W
) )
8 simpll2 998 . . . . . . 7  |-  ( ( ( ( W  e. 
_V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  b  e.  ZZ )  /\  x  e.  ( ZZ  ^m  W ) )  ->  V  e.  _V )
9 mzpf 26807 . . . . . . . . . . . . . 14  |-  ( G  e.  (mzPoly `  W
)  ->  G :
( ZZ  ^m  W
) --> ZZ )
109ffvelrnda 5873 . . . . . . . . . . . . 13  |-  ( ( G  e.  (mzPoly `  W )  /\  x  e.  ( ZZ  ^m  W
) )  ->  ( G `  x )  e.  ZZ )
1110expcom 426 . . . . . . . . . . . 12  |-  ( x  e.  ( ZZ  ^m  W )  ->  ( G  e.  (mzPoly `  W
)  ->  ( G `  x )  e.  ZZ ) )
1211ralimdv 2787 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ  ^m  W )  ->  ( A. y  e.  V  G  e.  (mzPoly `  W
)  ->  A. y  e.  V  ( G `  x )  e.  ZZ ) )
1312imp 420 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ 
^m  W )  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  ->  A. y  e.  V  ( G `  x )  e.  ZZ )
14 eqid 2438 . . . . . . . . . . 11  |-  ( y  e.  V  |->  ( G `
 x ) )  =  ( y  e.  V  |->  ( G `  x ) )
1514fmpt 5893 . . . . . . . . . 10  |-  ( A. y  e.  V  ( G `  x )  e.  ZZ  <->  ( y  e.  V  |->  ( G `  x ) ) : V --> ZZ )
1613, 15sylib 190 . . . . . . . . 9  |-  ( ( x  e.  ( ZZ 
^m  W )  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  ->  ( y  e.  V  |->  ( G `
 x ) ) : V --> ZZ )
1716adantr 453 . . . . . . . 8  |-  ( ( ( x  e.  ( ZZ  ^m  W )  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  V  e.  _V )  ->  ( y  e.  V  |->  ( G `  x
) ) : V --> ZZ )
18 zex 10296 . . . . . . . . 9  |-  ZZ  e.  _V
19 simpr 449 . . . . . . . . 9  |-  ( ( ( x  e.  ( ZZ  ^m  W )  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  V  e.  _V )  ->  V  e.  _V )
20 elmapg 7034 . . . . . . . . 9  |-  ( ( ZZ  e.  _V  /\  V  e.  _V )  ->  ( ( y  e.  V  |->  ( G `  x ) )  e.  ( ZZ  ^m  V
)  <->  ( y  e.  V  |->  ( G `  x ) ) : V --> ZZ ) )
2118, 19, 20sylancr 646 . . . . . . . 8  |-  ( ( ( x  e.  ( ZZ  ^m  W )  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  V  e.  _V )  ->  ( ( y  e.  V  |->  ( G `  x ) )  e.  ( ZZ  ^m  V
)  <->  ( y  e.  V  |->  ( G `  x ) ) : V --> ZZ ) )
2217, 21mpbird 225 . . . . . . 7  |-  ( ( ( x  e.  ( ZZ  ^m  W )  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  V  e.  _V )  ->  ( y  e.  V  |->  ( G `  x
) )  e.  ( ZZ  ^m  V ) )
236, 7, 8, 22syl21anc 1184 . . . . . 6  |-  ( ( ( ( W  e. 
_V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  b  e.  ZZ )  /\  x  e.  ( ZZ  ^m  W ) )  ->  ( y  e.  V  |->  ( G `  x ) )  e.  ( ZZ  ^m  V
) )
24 vex 2961 . . . . . . 7  |-  b  e. 
_V
2524fvconst2 5950 . . . . . 6  |-  ( ( y  e.  V  |->  ( G `  x ) )  e.  ( ZZ 
^m  V )  -> 
( ( ( ZZ 
^m  V )  X. 
{ b } ) `
 ( y  e.  V  |->  ( G `  x ) ) )  =  b )
2623, 25syl 16 . . . . 5  |-  ( ( ( ( W  e. 
_V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  b  e.  ZZ )  /\  x  e.  ( ZZ  ^m  W ) )  ->  ( ( ( ZZ  ^m  V )  X.  { b } ) `  ( y  e.  V  |->  ( G `
 x ) ) )  =  b )
2726mpteq2dva 4298 . . . 4  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  b  e.  ZZ )  ->  ( x  e.  ( ZZ  ^m  W )  |->  ( ( ( ZZ  ^m  V
)  X.  { b } ) `  (
y  e.  V  |->  ( G `  x ) ) ) )  =  ( x  e.  ( ZZ  ^m  W ) 
|->  b ) )
28 mzpconstmpt 26811 . . . . 5  |-  ( ( W  e.  _V  /\  b  e.  ZZ )  ->  ( x  e.  ( ZZ  ^m  W ) 
|->  b )  e.  (mzPoly `  W ) )
29283ad2antl1 1120 . . . 4  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  b  e.  ZZ )  ->  ( x  e.  ( ZZ  ^m  W )  |->  b )  e.  (mzPoly `  W
) )
3027, 29eqeltrd 2512 . . 3  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  b  e.  ZZ )  ->  ( x  e.  ( ZZ  ^m  W )  |->  ( ( ( ZZ  ^m  V
)  X.  { b } ) `  (
y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W )
)
31 simpr 449 . . . . . . . . 9  |-  ( ( ( ( W  e. 
_V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  b  e.  V )  /\  x  e.  ( ZZ  ^m  W ) )  ->  x  e.  ( ZZ  ^m  W ) )
32 simpll3 999 . . . . . . . . 9  |-  ( ( ( ( W  e. 
_V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  b  e.  V )  /\  x  e.  ( ZZ  ^m  W ) )  ->  A. y  e.  V  G  e.  (mzPoly `  W
) )
33 simpll2 998 . . . . . . . . 9  |-  ( ( ( ( W  e. 
_V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  b  e.  V )  /\  x  e.  ( ZZ  ^m  W ) )  ->  V  e.  _V )
3431, 32, 33, 22syl21anc 1184 . . . . . . . 8  |-  ( ( ( ( W  e. 
_V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  b  e.  V )  /\  x  e.  ( ZZ  ^m  W ) )  ->  ( y  e.  V  |->  ( G `  x ) )  e.  ( ZZ  ^m  V
) )
35 fveq1 5730 . . . . . . . . 9  |-  ( c  =  ( y  e.  V  |->  ( G `  x ) )  -> 
( c `  b
)  =  ( ( y  e.  V  |->  ( G `  x ) ) `  b ) )
36 eqid 2438 . . . . . . . . 9  |-  ( c  e.  ( ZZ  ^m  V )  |->  ( c `
 b ) )  =  ( c  e.  ( ZZ  ^m  V
)  |->  ( c `  b ) )
37 fvex 5745 . . . . . . . . 9  |-  ( ( y  e.  V  |->  ( G `  x ) ) `  b )  e.  _V
3835, 36, 37fvmpt 5809 . . . . . . . 8  |-  ( ( y  e.  V  |->  ( G `  x ) )  e.  ( ZZ 
^m  V )  -> 
( ( c  e.  ( ZZ  ^m  V
)  |->  ( c `  b ) ) `  ( y  e.  V  |->  ( G `  x
) ) )  =  ( ( y  e.  V  |->  ( G `  x ) ) `  b ) )
3934, 38syl 16 . . . . . . 7  |-  ( ( ( ( W  e. 
_V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  b  e.  V )  /\  x  e.  ( ZZ  ^m  W ) )  ->  ( ( c  e.  ( ZZ  ^m  V )  |->  ( c `
 b ) ) `
 ( y  e.  V  |->  ( G `  x ) ) )  =  ( ( y  e.  V  |->  ( G `
 x ) ) `
 b ) )
40 simplr 733 . . . . . . . 8  |-  ( ( ( ( W  e. 
_V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  b  e.  V )  /\  x  e.  ( ZZ  ^m  W ) )  ->  b  e.  V
)
41 fvex 5745 . . . . . . . 8  |-  ( [_ b  /  y ]_ G `  x )  e.  _V
42 csbeq1 3256 . . . . . . . . . 10  |-  ( a  =  b  ->  [_ a  /  y ]_ G  =  [_ b  /  y ]_ G )
4342fveq1d 5733 . . . . . . . . 9  |-  ( a  =  b  ->  ( [_ a  /  y ]_ G `  x )  =  ( [_ b  /  y ]_ G `  x ) )
44 nfcv 2574 . . . . . . . . . 10  |-  F/_ a
( G `  x
)
45 nfcsb1v 3285 . . . . . . . . . . 11  |-  F/_ y [_ a  /  y ]_ G
46 nfcv 2574 . . . . . . . . . . 11  |-  F/_ y
x
4745, 46nffv 5738 . . . . . . . . . 10  |-  F/_ y
( [_ a  /  y ]_ G `  x )
48 csbeq1a 3261 . . . . . . . . . . 11  |-  ( y  =  a  ->  G  =  [_ a  /  y ]_ G )
4948fveq1d 5733 . . . . . . . . . 10  |-  ( y  =  a  ->  ( G `  x )  =  ( [_ a  /  y ]_ G `  x ) )
5044, 47, 49cbvmpt 4302 . . . . . . . . 9  |-  ( y  e.  V  |->  ( G `
 x ) )  =  ( a  e.  V  |->  ( [_ a  /  y ]_ G `  x ) )
5143, 50fvmptg 5807 . . . . . . . 8  |-  ( ( b  e.  V  /\  ( [_ b  /  y ]_ G `  x )  e.  _V )  -> 
( ( y  e.  V  |->  ( G `  x ) ) `  b )  =  (
[_ b  /  y ]_ G `  x ) )
5240, 41, 51sylancl 645 . . . . . . 7  |-  ( ( ( ( W  e. 
_V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  b  e.  V )  /\  x  e.  ( ZZ  ^m  W ) )  ->  ( ( y  e.  V  |->  ( G `
 x ) ) `
 b )  =  ( [_ b  / 
y ]_ G `  x
) )
5339, 52eqtrd 2470 . . . . . 6  |-  ( ( ( ( W  e. 
_V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  /\  b  e.  V )  /\  x  e.  ( ZZ  ^m  W ) )  ->  ( ( c  e.  ( ZZ  ^m  V )  |->  ( c `
 b ) ) `
 ( y  e.  V  |->  ( G `  x ) ) )  =  ( [_ b  /  y ]_ G `  x ) )
5453mpteq2dva 4298 . . . . 5  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  b  e.  V )  ->  (
x  e.  ( ZZ 
^m  W )  |->  ( ( c  e.  ( ZZ  ^m  V ) 
|->  ( c `  b
) ) `  (
y  e.  V  |->  ( G `  x ) ) ) )  =  ( x  e.  ( ZZ  ^m  W ) 
|->  ( [_ b  / 
y ]_ G `  x
) ) )
55 simpr 449 . . . . . . . 8  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  b  e.  V )  ->  b  e.  V )
56 simpl3 963 . . . . . . . 8  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  b  e.  V )  ->  A. y  e.  V  G  e.  (mzPoly `  W ) )
57 nfcsb1v 3285 . . . . . . . . . 10  |-  F/_ y [_ b  /  y ]_ G
5857nfel1 2584 . . . . . . . . 9  |-  F/ y
[_ b  /  y ]_ G  e.  (mzPoly `  W )
59 csbeq1a 3261 . . . . . . . . . 10  |-  ( y  =  b  ->  G  =  [_ b  /  y ]_ G )
6059eleq1d 2504 . . . . . . . . 9  |-  ( y  =  b  ->  ( G  e.  (mzPoly `  W
)  <->  [_ b  /  y ]_ G  e.  (mzPoly `  W ) ) )
6158, 60rspc 3048 . . . . . . . 8  |-  ( b  e.  V  ->  ( A. y  e.  V  G  e.  (mzPoly `  W
)  ->  [_ b  / 
y ]_ G  e.  (mzPoly `  W ) ) )
6255, 56, 61sylc 59 . . . . . . 7  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  b  e.  V )  ->  [_ b  /  y ]_ G  e.  (mzPoly `  W )
)
63 mzpf 26807 . . . . . . 7  |-  ( [_ b  /  y ]_ G  e.  (mzPoly `  W )  ->  [_ b  /  y ]_ G : ( ZZ 
^m  W ) --> ZZ )
6462, 63syl 16 . . . . . 6  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  b  e.  V )  ->  [_ b  /  y ]_ G : ( ZZ  ^m  W ) --> ZZ )
6564feqmptd 5782 . . . . 5  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  b  e.  V )  ->  [_ b  /  y ]_ G  =  ( x  e.  ( ZZ  ^m  W
)  |->  ( [_ b  /  y ]_ G `  x ) ) )
6654, 65eqtr4d 2473 . . . 4  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  b  e.  V )  ->  (
x  e.  ( ZZ 
^m  W )  |->  ( ( c  e.  ( ZZ  ^m  V ) 
|->  ( c `  b
) ) `  (
y  e.  V  |->  ( G `  x ) ) ) )  = 
[_ b  /  y ]_ G )
6766, 62eqeltrd 2512 . . 3  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  b  e.  V )  ->  (
x  e.  ( ZZ 
^m  W )  |->  ( ( c  e.  ( ZZ  ^m  V ) 
|->  ( c `  b
) ) `  (
y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W )
)
68 simp2l 984 . . . . . 6  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( b `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) )  /\  ( c : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( c `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W ) ) )  ->  b : ( ZZ  ^m  V ) --> ZZ )
69 ffn 5594 . . . . . 6  |-  ( b : ( ZZ  ^m  V ) --> ZZ  ->  b  Fn  ( ZZ  ^m  V ) )
7068, 69syl 16 . . . . 5  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( b `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) )  /\  ( c : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( c `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W ) ) )  ->  b  Fn  ( ZZ  ^m  V ) )
71 simp3l 986 . . . . . 6  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( b `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) )  /\  ( c : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( c `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W ) ) )  ->  c : ( ZZ  ^m  V ) --> ZZ )
72 ffn 5594 . . . . . 6  |-  ( c : ( ZZ  ^m  V ) --> ZZ  ->  c  Fn  ( ZZ  ^m  V ) )
7371, 72syl 16 . . . . 5  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( b `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) )  /\  ( c : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( c `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W ) ) )  ->  c  Fn  ( ZZ  ^m  V ) )
74 simp13 990 . . . . 5  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( b `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) )  /\  ( c : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( c `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W ) ) )  ->  A. y  e.  V  G  e.  (mzPoly `  W
) )
75 simp12 989 . . . . 5  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( b `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) )  /\  ( c : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( c `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W ) ) )  ->  V  e.  _V )
76 simplll 736 . . . . . . 7  |-  ( ( ( ( b  Fn  ( ZZ  ^m  V
)  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( A. y  e.  V  G  e.  (mzPoly `  W )  /\  V  e.  _V ) )  /\  x  e.  ( ZZ  ^m  W
) )  ->  b  Fn  ( ZZ  ^m  V
) )
77 simpllr 737 . . . . . . 7  |-  ( ( ( ( b  Fn  ( ZZ  ^m  V
)  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( A. y  e.  V  G  e.  (mzPoly `  W )  /\  V  e.  _V ) )  /\  x  e.  ( ZZ  ^m  W
) )  ->  c  Fn  ( ZZ  ^m  V
) )
78 ovex 6109 . . . . . . . 8  |-  ( ZZ 
^m  V )  e. 
_V
7978a1i 11 . . . . . . 7  |-  ( ( ( ( b  Fn  ( ZZ  ^m  V
)  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( A. y  e.  V  G  e.  (mzPoly `  W )  /\  V  e.  _V ) )  /\  x  e.  ( ZZ  ^m  W
) )  ->  ( ZZ  ^m  V )  e. 
_V )
80 simpr 449 . . . . . . . . . 10  |-  ( ( ( ( b  Fn  ( ZZ  ^m  V
)  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( A. y  e.  V  G  e.  (mzPoly `  W )  /\  V  e.  _V ) )  /\  x  e.  ( ZZ  ^m  W
) )  ->  x  e.  ( ZZ  ^m  W
) )
81 simplrl 738 . . . . . . . . . 10  |-  ( ( ( ( b  Fn  ( ZZ  ^m  V
)  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( A. y  e.  V  G  e.  (mzPoly `  W )  /\  V  e.  _V ) )  /\  x  e.  ( ZZ  ^m  W
) )  ->  A. y  e.  V  G  e.  (mzPoly `  W ) )
8280, 81, 12sylc 59 . . . . . . . . 9  |-  ( ( ( ( b  Fn  ( ZZ  ^m  V
)  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( A. y  e.  V  G  e.  (mzPoly `  W )  /\  V  e.  _V ) )  /\  x  e.  ( ZZ  ^m  W
) )  ->  A. y  e.  V  ( G `  x )  e.  ZZ )
8382, 15sylib 190 . . . . . . . 8  |-  ( ( ( ( b  Fn  ( ZZ  ^m  V
)  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( A. y  e.  V  G  e.  (mzPoly `  W )  /\  V  e.  _V ) )  /\  x  e.  ( ZZ  ^m  W
) )  ->  (
y  e.  V  |->  ( G `  x ) ) : V --> ZZ )
84 simplrr 739 . . . . . . . . 9  |-  ( ( ( ( b  Fn  ( ZZ  ^m  V
)  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( A. y  e.  V  G  e.  (mzPoly `  W )  /\  V  e.  _V ) )  /\  x  e.  ( ZZ  ^m  W
) )  ->  V  e.  _V )
8518, 84, 20sylancr 646 . . . . . . . 8  |-  ( ( ( ( b  Fn  ( ZZ  ^m  V
)  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( A. y  e.  V  G  e.  (mzPoly `  W )  /\  V  e.  _V ) )  /\  x  e.  ( ZZ  ^m  W
) )  ->  (
( y  e.  V  |->  ( G `  x
) )  e.  ( ZZ  ^m  V )  <-> 
( y  e.  V  |->  ( G `  x
) ) : V --> ZZ ) )
8683, 85mpbird 225 . . . . . . 7  |-  ( ( ( ( b  Fn  ( ZZ  ^m  V
)  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( A. y  e.  V  G  e.  (mzPoly `  W )  /\  V  e.  _V ) )  /\  x  e.  ( ZZ  ^m  W
) )  ->  (
y  e.  V  |->  ( G `  x ) )  e.  ( ZZ 
^m  V ) )
87 fnfvof 6320 . . . . . . 7  |-  ( ( ( b  Fn  ( ZZ  ^m  V )  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( ( ZZ  ^m  V )  e.  _V  /\  ( y  e.  V  |->  ( G `  x
) )  e.  ( ZZ  ^m  V ) ) )  ->  (
( b  o F  +  c ) `  ( y  e.  V  |->  ( G `  x
) ) )  =  ( ( b `  ( y  e.  V  |->  ( G `  x
) ) )  +  ( c `  (
y  e.  V  |->  ( G `  x ) ) ) ) )
8876, 77, 79, 86, 87syl22anc 1186 . . . . . 6  |-  ( ( ( ( b  Fn  ( ZZ  ^m  V
)  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( A. y  e.  V  G  e.  (mzPoly `  W )  /\  V  e.  _V ) )  /\  x  e.  ( ZZ  ^m  W
) )  ->  (
( b  o F  +  c ) `  ( y  e.  V  |->  ( G `  x
) ) )  =  ( ( b `  ( y  e.  V  |->  ( G `  x
) ) )  +  ( c `  (
y  e.  V  |->  ( G `  x ) ) ) ) )
8988mpteq2dva 4298 . . . . 5  |-  ( ( ( b  Fn  ( ZZ  ^m  V )  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( A. y  e.  V  G  e.  (mzPoly `  W
)  /\  V  e.  _V ) )  ->  (
x  e.  ( ZZ 
^m  W )  |->  ( ( b  o F  +  c ) `  ( y  e.  V  |->  ( G `  x
) ) ) )  =  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( b `
 ( y  e.  V  |->  ( G `  x ) ) )  +  ( c `  ( y  e.  V  |->  ( G `  x
) ) ) ) ) )
9070, 73, 74, 75, 89syl22anc 1186 . . . 4  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( b `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) )  /\  ( c : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( c `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W ) ) )  ->  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( b  o F  +  c ) `  ( y  e.  V  |->  ( G `
 x ) ) ) )  =  ( x  e.  ( ZZ 
^m  W )  |->  ( ( b `  (
y  e.  V  |->  ( G `  x ) ) )  +  ( c `  ( y  e.  V  |->  ( G `
 x ) ) ) ) ) )
91 simp2r 985 . . . . 5  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( b `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) )  /\  ( c : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( c `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W ) ) )  ->  ( x  e.  ( ZZ  ^m  W
)  |->  ( b `  ( y  e.  V  |->  ( G `  x
) ) ) )  e.  (mzPoly `  W
) )
92 simp3r 987 . . . . 5  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( b `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) )  /\  ( c : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( c `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W ) ) )  ->  ( x  e.  ( ZZ  ^m  W
)  |->  ( c `  ( y  e.  V  |->  ( G `  x
) ) ) )  e.  (mzPoly `  W
) )
93 mzpaddmpt 26812 . . . . 5  |-  ( ( ( x  e.  ( ZZ  ^m  W ) 
|->  ( b `  (
y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W )  /\  ( x  e.  ( ZZ  ^m  W ) 
|->  ( c `  (
y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W )
)  ->  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( b `
 ( y  e.  V  |->  ( G `  x ) ) )  +  ( c `  ( y  e.  V  |->  ( G `  x
) ) ) ) )  e.  (mzPoly `  W ) )
9491, 92, 93syl2anc 644 . . . 4  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( b `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) )  /\  ( c : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( c `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W ) ) )  ->  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( b `
 ( y  e.  V  |->  ( G `  x ) ) )  +  ( c `  ( y  e.  V  |->  ( G `  x
) ) ) ) )  e.  (mzPoly `  W ) )
9590, 94eqeltrd 2512 . . 3  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( b `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) )  /\  ( c : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( c `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W ) ) )  ->  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( b  o F  +  c ) `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) )
96 fnfvof 6320 . . . . . . 7  |-  ( ( ( b  Fn  ( ZZ  ^m  V )  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( ( ZZ  ^m  V )  e.  _V  /\  ( y  e.  V  |->  ( G `  x
) )  e.  ( ZZ  ^m  V ) ) )  ->  (
( b  o F  x.  c ) `  ( y  e.  V  |->  ( G `  x
) ) )  =  ( ( b `  ( y  e.  V  |->  ( G `  x
) ) )  x.  ( c `  (
y  e.  V  |->  ( G `  x ) ) ) ) )
9776, 77, 79, 86, 96syl22anc 1186 . . . . . 6  |-  ( ( ( ( b  Fn  ( ZZ  ^m  V
)  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( A. y  e.  V  G  e.  (mzPoly `  W )  /\  V  e.  _V ) )  /\  x  e.  ( ZZ  ^m  W
) )  ->  (
( b  o F  x.  c ) `  ( y  e.  V  |->  ( G `  x
) ) )  =  ( ( b `  ( y  e.  V  |->  ( G `  x
) ) )  x.  ( c `  (
y  e.  V  |->  ( G `  x ) ) ) ) )
9897mpteq2dva 4298 . . . . 5  |-  ( ( ( b  Fn  ( ZZ  ^m  V )  /\  c  Fn  ( ZZ  ^m  V ) )  /\  ( A. y  e.  V  G  e.  (mzPoly `  W
)  /\  V  e.  _V ) )  ->  (
x  e.  ( ZZ 
^m  W )  |->  ( ( b  o F  x.  c ) `  ( y  e.  V  |->  ( G `  x
) ) ) )  =  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( b `
 ( y  e.  V  |->  ( G `  x ) ) )  x.  ( c `  ( y  e.  V  |->  ( G `  x
) ) ) ) ) )
9970, 73, 74, 75, 98syl22anc 1186 . . . 4  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( b `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) )  /\  ( c : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( c `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W ) ) )  ->  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( b  o F  x.  c
) `  ( y  e.  V  |->  ( G `
 x ) ) ) )  =  ( x  e.  ( ZZ 
^m  W )  |->  ( ( b `  (
y  e.  V  |->  ( G `  x ) ) )  x.  (
c `  ( y  e.  V  |->  ( G `
 x ) ) ) ) ) )
100 mzpmulmpt 26813 . . . . 5  |-  ( ( ( x  e.  ( ZZ  ^m  W ) 
|->  ( b `  (
y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W )  /\  ( x  e.  ( ZZ  ^m  W ) 
|->  ( c `  (
y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W )
)  ->  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( b `
 ( y  e.  V  |->  ( G `  x ) ) )  x.  ( c `  ( y  e.  V  |->  ( G `  x
) ) ) ) )  e.  (mzPoly `  W ) )
10191, 92, 100syl2anc 644 . . . 4  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( b `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) )  /\  ( c : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( c `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W ) ) )  ->  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( b `
 ( y  e.  V  |->  ( G `  x ) ) )  x.  ( c `  ( y  e.  V  |->  ( G `  x
) ) ) ) )  e.  (mzPoly `  W ) )
10299, 101eqeltrd 2512 . . 3  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  ( b : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( b `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) )  /\  ( c : ( ZZ  ^m  V ) --> ZZ  /\  ( x  e.  ( ZZ  ^m  W )  |->  ( c `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W ) ) )  ->  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( b  o F  x.  c
) `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) )
103 fveq1 5730 . . . . 5  |-  ( a  =  ( ( ZZ 
^m  V )  X. 
{ b } )  ->  ( a `  ( y  e.  V  |->  ( G `  x
) ) )  =  ( ( ( ZZ 
^m  V )  X. 
{ b } ) `
 ( y  e.  V  |->  ( G `  x ) ) ) )
104103mpteq2dv 4299 . . . 4  |-  ( a  =  ( ( ZZ 
^m  V )  X. 
{ b } )  ->  ( x  e.  ( ZZ  ^m  W
)  |->  ( a `  ( y  e.  V  |->  ( G `  x
) ) ) )  =  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( ( ZZ  ^m  V )  X.  { b } ) `  ( y  e.  V  |->  ( G `
 x ) ) ) ) )
105104eleq1d 2504 . . 3  |-  ( a  =  ( ( ZZ 
^m  V )  X. 
{ b } )  ->  ( ( x  e.  ( ZZ  ^m  W )  |->  ( a `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W )  <->  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( ( ZZ  ^m  V )  X.  { b } ) `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) ) )
106 fveq1 5730 . . . . 5  |-  ( a  =  ( c  e.  ( ZZ  ^m  V
)  |->  ( c `  b ) )  -> 
( a `  (
y  e.  V  |->  ( G `  x ) ) )  =  ( ( c  e.  ( ZZ  ^m  V ) 
|->  ( c `  b
) ) `  (
y  e.  V  |->  ( G `  x ) ) ) )
107106mpteq2dv 4299 . . . 4  |-  ( a  =  ( c  e.  ( ZZ  ^m  V
)  |->  ( c `  b ) )  -> 
( x  e.  ( ZZ  ^m  W ) 
|->  ( a `  (
y  e.  V  |->  ( G `  x ) ) ) )  =  ( x  e.  ( ZZ  ^m  W ) 
|->  ( ( c  e.  ( ZZ  ^m  V
)  |->  ( c `  b ) ) `  ( y  e.  V  |->  ( G `  x
) ) ) ) )
108107eleq1d 2504 . . 3  |-  ( a  =  ( c  e.  ( ZZ  ^m  V
)  |->  ( c `  b ) )  -> 
( ( x  e.  ( ZZ  ^m  W
)  |->  ( a `  ( y  e.  V  |->  ( G `  x
) ) ) )  e.  (mzPoly `  W
)  <->  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( c  e.  ( ZZ  ^m  V )  |->  ( c `
 b ) ) `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W ) ) )
109 fveq1 5730 . . . . 5  |-  ( a  =  b  ->  (
a `  ( y  e.  V  |->  ( G `
 x ) ) )  =  ( b `
 ( y  e.  V  |->  ( G `  x ) ) ) )
110109mpteq2dv 4299 . . . 4  |-  ( a  =  b  ->  (
x  e.  ( ZZ 
^m  W )  |->  ( a `  ( y  e.  V  |->  ( G `
 x ) ) ) )  =  ( x  e.  ( ZZ 
^m  W )  |->  ( b `  ( y  e.  V  |->  ( G `
 x ) ) ) ) )
111110eleq1d 2504 . . 3  |-  ( a  =  b  ->  (
( x  e.  ( ZZ  ^m  W ) 
|->  ( a `  (
y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W )  <->  ( x  e.  ( ZZ 
^m  W )  |->  ( b `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) ) )
112 fveq1 5730 . . . . 5  |-  ( a  =  c  ->  (
a `  ( y  e.  V  |->  ( G `
 x ) ) )  =  ( c `
 ( y  e.  V  |->  ( G `  x ) ) ) )
113112mpteq2dv 4299 . . . 4  |-  ( a  =  c  ->  (
x  e.  ( ZZ 
^m  W )  |->  ( a `  ( y  e.  V  |->  ( G `
 x ) ) ) )  =  ( x  e.  ( ZZ 
^m  W )  |->  ( c `  ( y  e.  V  |->  ( G `
 x ) ) ) ) )
114113eleq1d 2504 . . 3  |-  ( a  =  c  ->  (
( x  e.  ( ZZ  ^m  W ) 
|->  ( a `  (
y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W )  <->  ( x  e.  ( ZZ 
^m  W )  |->  ( c `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) ) )
115 fveq1 5730 . . . . 5  |-  ( a  =  ( b  o F  +  c )  ->  ( a `  ( y  e.  V  |->  ( G `  x
) ) )  =  ( ( b  o F  +  c ) `
 ( y  e.  V  |->  ( G `  x ) ) ) )
116115mpteq2dv 4299 . . . 4  |-  ( a  =  ( b  o F  +  c )  ->  ( x  e.  ( ZZ  ^m  W
)  |->  ( a `  ( y  e.  V  |->  ( G `  x
) ) ) )  =  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( b  o F  +  c ) `  ( y  e.  V  |->  ( G `
 x ) ) ) ) )
117116eleq1d 2504 . . 3  |-  ( a  =  ( b  o F  +  c )  ->  ( ( x  e.  ( ZZ  ^m  W )  |->  ( a `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W )  <->  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( b  o F  +  c ) `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) ) )
118 fveq1 5730 . . . . 5  |-  ( a  =  ( b  o F  x.  c )  ->  ( a `  ( y  e.  V  |->  ( G `  x
) ) )  =  ( ( b  o F  x.  c ) `
 ( y  e.  V  |->  ( G `  x ) ) ) )
119118mpteq2dv 4299 . . . 4  |-  ( a  =  ( b  o F  x.  c )  ->  ( x  e.  ( ZZ  ^m  W
)  |->  ( a `  ( y  e.  V  |->  ( G `  x
) ) ) )  =  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( b  o F  x.  c
) `  ( y  e.  V  |->  ( G `
 x ) ) ) ) )
120119eleq1d 2504 . . 3  |-  ( a  =  ( b  o F  x.  c )  ->  ( ( x  e.  ( ZZ  ^m  W )  |->  ( a `
 ( y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W )  <->  ( x  e.  ( ZZ  ^m  W
)  |->  ( ( b  o F  x.  c
) `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) ) )
121 fveq1 5730 . . . . 5  |-  ( a  =  F  ->  (
a `  ( y  e.  V  |->  ( G `
 x ) ) )  =  ( F `
 ( y  e.  V  |->  ( G `  x ) ) ) )
122121mpteq2dv 4299 . . . 4  |-  ( a  =  F  ->  (
x  e.  ( ZZ 
^m  W )  |->  ( a `  ( y  e.  V  |->  ( G `
 x ) ) ) )  =  ( x  e.  ( ZZ 
^m  W )  |->  ( F `  ( y  e.  V  |->  ( G `
 x ) ) ) ) )
123122eleq1d 2504 . . 3  |-  ( a  =  F  ->  (
( x  e.  ( ZZ  ^m  W ) 
|->  ( a `  (
y  e.  V  |->  ( G `  x ) ) ) )  e.  (mzPoly `  W )  <->  ( x  e.  ( ZZ 
^m  W )  |->  ( F `  ( y  e.  V  |->  ( G `
 x ) ) ) )  e.  (mzPoly `  W ) ) )
12430, 67, 95, 102, 105, 108, 111, 114, 117, 120, 123mzpindd 26817 . 2  |-  ( ( ( W  e.  _V  /\  V  e.  _V  /\  A. y  e.  V  G  e.  (mzPoly `  W )
)  /\  F  e.  (mzPoly `  V ) )  ->  ( x  e.  ( ZZ  ^m  W
)  |->  ( F `  ( y  e.  V  |->  ( G `  x
) ) ) )  e.  (mzPoly `  W
) )
1251, 3, 4, 5, 124syl31anc 1188 1  |-  ( ( W  e.  _V  /\  F  e.  (mzPoly `  V
)  /\  A. y  e.  V  G  e.  (mzPoly `  W ) )  ->  ( x  e.  ( ZZ  ^m  W
)  |->  ( F `  ( y  e.  V  |->  ( G `  x
) ) ) )  e.  (mzPoly `  W
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   _Vcvv 2958   [_csb 3253   {csn 3816    e. cmpt 4269    X. cxp 4879    Fn wfn 5452   -->wf 5453   ` cfv 5457  (class class class)co 6084    o Fcof 6306    ^m cmap 7021    + caddc 8998    x. cmul 9000   ZZcz 10287  mzPolycmzp 26793
This theorem is referenced by:  mzprename  26820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-n0 10227  df-z 10288  df-mzpcl 26794  df-mzp 26795
  Copyright terms: Public domain W3C validator