MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0moeu Unicode version

Theorem n0moeu 3467
Description: A case of equivalence of "at most one" and "only one". (Contributed by FL, 6-Dec-2010.)
Assertion
Ref Expression
n0moeu  |-  ( A  =/=  (/)  ->  ( E* x  x  e.  A  <->  E! x  x  e.  A
) )
Distinct variable group:    x, A

Proof of Theorem n0moeu
StepHypRef Expression
1 n0 3464 . . . 4  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
21biimpi 186 . . 3  |-  ( A  =/=  (/)  ->  E. x  x  e.  A )
32biantrurd 494 . 2  |-  ( A  =/=  (/)  ->  ( E* x  x  e.  A  <->  ( E. x  x  e.  A  /\  E* x  x  e.  A )
) )
4 eu5 2181 . 2  |-  ( E! x  x  e.  A  <->  ( E. x  x  e.  A  /\  E* x  x  e.  A )
)
53, 4syl6bbr 254 1  |-  ( A  =/=  (/)  ->  ( E* x  x  e.  A  <->  E! x  x  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    e. wcel 1684   E!weu 2143   E*wmo 2144    =/= wne 2446   (/)c0 3455
This theorem is referenced by:  minveclem4a  18794  nolimf2  25620
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-v 2790  df-dif 3155  df-nul 3456
  Copyright terms: Public domain W3C validator