MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0moeu Unicode version

Theorem n0moeu 3585
Description: A case of equivalence of "at most one" and "only one". (Contributed by FL, 6-Dec-2010.)
Assertion
Ref Expression
n0moeu  |-  ( A  =/=  (/)  ->  ( E* x  x  e.  A  <->  E! x  x  e.  A
) )
Distinct variable group:    x, A

Proof of Theorem n0moeu
StepHypRef Expression
1 n0 3582 . . . 4  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
21biimpi 187 . . 3  |-  ( A  =/=  (/)  ->  E. x  x  e.  A )
32biantrurd 495 . 2  |-  ( A  =/=  (/)  ->  ( E* x  x  e.  A  <->  ( E. x  x  e.  A  /\  E* x  x  e.  A )
) )
4 eu5 2278 . 2  |-  ( E! x  x  e.  A  <->  ( E. x  x  e.  A  /\  E* x  x  e.  A )
)
53, 4syl6bbr 255 1  |-  ( A  =/=  (/)  ->  ( E* x  x  e.  A  <->  E! x  x  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    e. wcel 1717   E!weu 2240   E*wmo 2241    =/= wne 2552   (/)c0 3573
This theorem is referenced by:  minveclem4a  19200
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-v 2903  df-dif 3268  df-nul 3574
  Copyright terms: Public domain W3C validator