Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nanbi Structured version   Unicode version

Theorem nanbi 1303
 Description: Show equivalence between the bidirectional and the Nicod version. (Contributed by Jeff Hoffman, 19-Nov-2007.)
Assertion
Ref Expression
nanbi

Proof of Theorem nanbi
StepHypRef Expression
1 pm4.57 484 . 2
2 df-nan 1297 . . 3
3 df-nan 1297 . . . 4
4 df-nan 1297 . . . . 5
5 nannot 1302 . . . . . 6
6 nannot 1302 . . . . . 6
75, 6anbi12i 679 . . . . 5
84, 7xchbinxr 303 . . . 4
93, 8anbi12i 679 . . 3
102, 9xchbinx 302 . 2
11 dfbi3 864 . 2
121, 10, 113bitr4ri 270 1
 Colors of variables: wff set class Syntax hints:   wn 3   wb 177   wo 358   wa 359   wnan 1296 This theorem is referenced by:  nic-dfim  1443  nic-dfneg  1444 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-nan 1297
 Copyright terms: Public domain W3C validator