MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nat1st2nd Unicode version

Theorem nat1st2nd 13825
Description: Rewrite the natural transformation predicate with separated functor parts. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natrcl.1  |-  N  =  ( C Nat  D )
nat1st2nd.2  |-  ( ph  ->  A  e.  ( F N G ) )
Assertion
Ref Expression
nat1st2nd  |-  ( ph  ->  A  e.  ( <.
( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )

Proof of Theorem nat1st2nd
StepHypRef Expression
1 nat1st2nd.2 . 2  |-  ( ph  ->  A  e.  ( F N G ) )
2 relfunc 13736 . . . 4  |-  Rel  ( C  Func  D )
3 natrcl.1 . . . . . . 7  |-  N  =  ( C Nat  D )
43natrcl 13824 . . . . . 6  |-  ( A  e.  ( F N G )  ->  ( F  e.  ( C  Func  D )  /\  G  e.  ( C  Func  D
) ) )
51, 4syl 15 . . . . 5  |-  ( ph  ->  ( F  e.  ( C  Func  D )  /\  G  e.  ( C  Func  D ) ) )
65simpld 445 . . . 4  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
7 1st2nd 6166 . . . 4  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
82, 6, 7sylancr 644 . . 3  |-  ( ph  ->  F  =  <. ( 1st `  F ) ,  ( 2nd `  F
) >. )
95simprd 449 . . . 4  |-  ( ph  ->  G  e.  ( C 
Func  D ) )
10 1st2nd 6166 . . . 4  |-  ( ( Rel  ( C  Func  D )  /\  G  e.  ( C  Func  D
) )  ->  G  =  <. ( 1st `  G
) ,  ( 2nd `  G ) >. )
112, 9, 10sylancr 644 . . 3  |-  ( ph  ->  G  =  <. ( 1st `  G ) ,  ( 2nd `  G
) >. )
128, 11oveq12d 5876 . 2  |-  ( ph  ->  ( F N G )  =  ( <.
( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
131, 12eleqtrd 2359 1  |-  ( ph  ->  A  e.  ( <.
( 1st `  F
) ,  ( 2nd `  F ) >. N <. ( 1st `  G ) ,  ( 2nd `  G
) >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   <.cop 3643   Rel wrel 4694   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121    Func cfunc 13728   Nat cnat 13815
This theorem is referenced by:  fuccocl  13838  fuclid  13840  fucrid  13841  fucass  13842  fucsect  13846  invfuc  13848  fucpropd  13851  evlfcllem  13995  evlfcl  13996  curfuncf  14012  yonedalem3a  14048  yonedalem3b  14053  yonedainv  14055  yonffthlem  14056
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-ixp 6818  df-func 13732  df-nat 13817
  Copyright terms: Public domain W3C validator