MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natfval Unicode version

Theorem natfval 13836
Description: Value of the function giving natural transformations between two categories. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
natfval.1  |-  N  =  ( C Nat  D )
natfval.b  |-  B  =  ( Base `  C
)
natfval.h  |-  H  =  (  Hom  `  C
)
natfval.j  |-  J  =  (  Hom  `  D
)
natfval.o  |-  .x.  =  (comp `  D )
Assertion
Ref Expression
natfval  |-  N  =  ( f  e.  ( C  Func  D ) ,  g  e.  ( C  Func  D )  |->  [_ ( 1st `  f )  /  r ]_ [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  B  ( ( r `  x ) J ( s `  x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )
Distinct variable groups:    f, a,
g, h, r, s, x, y    B, a, f, g, r, s, x, y    C, a, f, g, h, r, s, x, y    J, a, f, g, r, s    H, a, f, g, h, r, s    .x. , a,
f, g, r, s    D, a, f, g, h, r, s, x, y
Allowed substitution hints:    B( h)    .x. ( x, y, h)    H( x, y)    J( x, y, h)    N( x, y, f, g, h, s, r, a)

Proof of Theorem natfval
Dummy variables  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 natfval.1 . 2  |-  N  =  ( C Nat  D )
2 oveq12 5883 . . . . 5  |-  ( ( t  =  C  /\  u  =  D )  ->  ( t  Func  u
)  =  ( C 
Func  D ) )
3 simpl 443 . . . . . . . . . . . 12  |-  ( ( t  =  C  /\  u  =  D )  ->  t  =  C )
43fveq2d 5545 . . . . . . . . . . 11  |-  ( ( t  =  C  /\  u  =  D )  ->  ( Base `  t
)  =  ( Base `  C ) )
5 natfval.b . . . . . . . . . . 11  |-  B  =  ( Base `  C
)
64, 5syl6eqr 2346 . . . . . . . . . 10  |-  ( ( t  =  C  /\  u  =  D )  ->  ( Base `  t
)  =  B )
76ixpeq1d 6844 . . . . . . . . 9  |-  ( ( t  =  C  /\  u  =  D )  -> 
X_ x  e.  (
Base `  t )
( ( r `  x ) (  Hom  `  u ) ( s `
 x ) )  =  X_ x  e.  B  ( ( r `  x ) (  Hom  `  u ) ( s `
 x ) ) )
8 simpr 447 . . . . . . . . . . . . 13  |-  ( ( t  =  C  /\  u  =  D )  ->  u  =  D )
98fveq2d 5545 . . . . . . . . . . . 12  |-  ( ( t  =  C  /\  u  =  D )  ->  (  Hom  `  u
)  =  (  Hom  `  D ) )
10 natfval.j . . . . . . . . . . . 12  |-  J  =  (  Hom  `  D
)
119, 10syl6eqr 2346 . . . . . . . . . . 11  |-  ( ( t  =  C  /\  u  =  D )  ->  (  Hom  `  u
)  =  J )
1211oveqd 5891 . . . . . . . . . 10  |-  ( ( t  =  C  /\  u  =  D )  ->  ( ( r `  x ) (  Hom  `  u ) ( s `
 x ) )  =  ( ( r `
 x ) J ( s `  x
) ) )
1312ixpeq2dv 6848 . . . . . . . . 9  |-  ( ( t  =  C  /\  u  =  D )  -> 
X_ x  e.  B  ( ( r `  x ) (  Hom  `  u ) ( s `
 x ) )  =  X_ x  e.  B  ( ( r `  x ) J ( s `  x ) ) )
147, 13eqtrd 2328 . . . . . . . 8  |-  ( ( t  =  C  /\  u  =  D )  -> 
X_ x  e.  (
Base `  t )
( ( r `  x ) (  Hom  `  u ) ( s `
 x ) )  =  X_ x  e.  B  ( ( r `  x ) J ( s `  x ) ) )
153fveq2d 5545 . . . . . . . . . . . . 13  |-  ( ( t  =  C  /\  u  =  D )  ->  (  Hom  `  t
)  =  (  Hom  `  C ) )
16 natfval.h . . . . . . . . . . . . 13  |-  H  =  (  Hom  `  C
)
1715, 16syl6eqr 2346 . . . . . . . . . . . 12  |-  ( ( t  =  C  /\  u  =  D )  ->  (  Hom  `  t
)  =  H )
1817oveqd 5891 . . . . . . . . . . 11  |-  ( ( t  =  C  /\  u  =  D )  ->  ( x (  Hom  `  t ) y )  =  ( x H y ) )
198fveq2d 5545 . . . . . . . . . . . . . . 15  |-  ( ( t  =  C  /\  u  =  D )  ->  (comp `  u )  =  (comp `  D )
)
20 natfval.o . . . . . . . . . . . . . . 15  |-  .x.  =  (comp `  D )
2119, 20syl6eqr 2346 . . . . . . . . . . . . . 14  |-  ( ( t  =  C  /\  u  =  D )  ->  (comp `  u )  =  .x.  )
2221oveqd 5891 . . . . . . . . . . . . 13  |-  ( ( t  =  C  /\  u  =  D )  ->  ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  u )
( s `  y
) )  =  (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) )
2322oveqd 5891 . . . . . . . . . . . 12  |-  ( ( t  =  C  /\  u  =  D )  ->  ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) ) )
2421oveqd 5891 . . . . . . . . . . . . 13  |-  ( ( t  =  C  /\  u  =  D )  ->  ( <. ( r `  x ) ,  ( s `  x )
>. (comp `  u )
( s `  y
) )  =  (
<. ( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) )
2524oveqd 5891 . . . . . . . . . . . 12  |-  ( ( t  =  C  /\  u  =  D )  ->  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) )
2623, 25eqeq12d 2310 . . . . . . . . . . 11  |-  ( ( t  =  C  /\  u  =  D )  ->  ( ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.
(comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) )  <-> 
( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) ) )
2718, 26raleqbidv 2761 . . . . . . . . . 10  |-  ( ( t  =  C  /\  u  =  D )  ->  ( A. h  e.  ( x (  Hom  `  t ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) )  <->  A. h  e.  (
x H y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) ) )
286, 27raleqbidv 2761 . . . . . . . . 9  |-  ( ( t  =  C  /\  u  =  D )  ->  ( A. y  e.  ( Base `  t
) A. h  e.  ( x (  Hom  `  t ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) )  <->  A. y  e.  B  A. h  e.  (
x H y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) ) )
296, 28raleqbidv 2761 . . . . . . . 8  |-  ( ( t  =  C  /\  u  =  D )  ->  ( A. x  e.  ( Base `  t
) A. y  e.  ( Base `  t
) A. h  e.  ( x (  Hom  `  t ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) )  <->  A. x  e.  B  A. y  e.  B  A. h  e.  (
x H y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) ) )
3014, 29rabeqbidv 2796 . . . . . . 7  |-  ( ( t  =  C  /\  u  =  D )  ->  { a  e.  X_ x  e.  ( Base `  t ) ( ( r `  x ) (  Hom  `  u
) ( s `  x ) )  | 
A. x  e.  (
Base `  t ) A. y  e.  ( Base `  t ) A. h  e.  ( x
(  Hom  `  t ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) ) }  =  { a  e.  X_ x  e.  B  ( ( r `  x ) J ( s `  x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )
3130csbeq2dv 3119 . . . . . 6  |-  ( ( t  =  C  /\  u  =  D )  ->  [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  t ) ( ( r `  x ) (  Hom  `  u
) ( s `  x ) )  | 
A. x  e.  (
Base `  t ) A. y  e.  ( Base `  t ) A. h  e.  ( x
(  Hom  `  t ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  B  ( ( r `  x ) J ( s `  x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )
3231csbeq2dv 3119 . . . . 5  |-  ( ( t  =  C  /\  u  =  D )  ->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  t ) ( ( r `  x ) (  Hom  `  u
) ( s `  x ) )  | 
A. x  e.  (
Base `  t ) A. y  e.  ( Base `  t ) A. h  e.  ( x
(  Hom  `  t ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  f )  / 
r ]_ [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )
332, 2, 32mpt2eq123dv 5926 . . . 4  |-  ( ( t  =  C  /\  u  =  D )  ->  ( f  e.  ( t  Func  u ) ,  g  e.  (
t  Func  u )  |-> 
[_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  t ) ( ( r `  x ) (  Hom  `  u
) ( s `  x ) )  | 
A. x  e.  (
Base `  t ) A. y  e.  ( Base `  t ) A. h  e.  ( x
(  Hom  `  t ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) ) } )  =  ( f  e.  ( C 
Func  D ) ,  g  e.  ( C  Func  D )  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } ) )
34 df-nat 13833 . . . 4  |- Nat  =  ( t  e.  Cat ,  u  e.  Cat  |->  ( f  e.  ( t  Func  u ) ,  g  e.  ( t  Func  u
)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  t ) ( ( r `  x ) (  Hom  `  u
) ( s `  x ) )  | 
A. x  e.  (
Base `  t ) A. y  e.  ( Base `  t ) A. h  e.  ( x
(  Hom  `  t ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) ) } ) )
35 ovex 5899 . . . . 5  |-  ( C 
Func  D )  e.  _V
3635, 35mpt2ex 6214 . . . 4  |-  ( f  e.  ( C  Func  D ) ,  g  e.  ( C  Func  D
)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )  e.  _V
3733, 34, 36ovmpt2a 5994 . . 3  |-  ( ( C  e.  Cat  /\  D  e.  Cat )  ->  ( C Nat  D )  =  ( f  e.  ( C  Func  D
) ,  g  e.  ( C  Func  D
)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } ) )
38 ovex 5899 . . . . . . . 8  |-  ( t 
Func  u )  e.  _V
3938, 38mpt2ex 6214 . . . . . . 7  |-  ( f  e.  ( t  Func  u ) ,  g  e.  ( t  Func  u
)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  t ) ( ( r `  x ) (  Hom  `  u
) ( s `  x ) )  | 
A. x  e.  (
Base `  t ) A. y  e.  ( Base `  t ) A. h  e.  ( x
(  Hom  `  t ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  u )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  u )
( s `  y
) ) ( a `
 x ) ) } )  e.  _V
4034, 39fnmpt2i 6209 . . . . . 6  |- Nat  Fn  ( Cat  X.  Cat )
41 fndm 5359 . . . . . 6  |-  ( Nat  Fn  ( Cat  X.  Cat )  ->  dom Nat  =  ( Cat 
X.  Cat ) )
4240, 41ax-mp 8 . . . . 5  |-  dom Nat  =  ( Cat  X.  Cat )
4342ndmov 6020 . . . 4  |-  ( -.  ( C  e.  Cat  /\  D  e.  Cat )  ->  ( C Nat  D )  =  (/) )
44 funcrcl 13753 . . . . . . . 8  |-  ( f  e.  ( C  Func  D )  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
4544con3i 127 . . . . . . 7  |-  ( -.  ( C  e.  Cat  /\  D  e.  Cat )  ->  -.  f  e.  ( C  Func  D )
)
4645eq0rdv 3502 . . . . . 6  |-  ( -.  ( C  e.  Cat  /\  D  e.  Cat )  ->  ( C  Func  D
)  =  (/) )
47 mpt2eq12 5924 . . . . . 6  |-  ( ( ( C  Func  D
)  =  (/)  /\  ( C  Func  D )  =  (/) )  ->  ( f  e.  ( C  Func  D ) ,  g  e.  ( C  Func  D
)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )  =  ( f  e.  (/) ,  g  e.  (/)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } ) )
4846, 46, 47syl2anc 642 . . . . 5  |-  ( -.  ( C  e.  Cat  /\  D  e.  Cat )  ->  ( f  e.  ( C  Func  D ) ,  g  e.  ( C  Func  D )  |->  [_ ( 1st `  f )  /  r ]_ [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  B  ( ( r `  x ) J ( s `  x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )  =  ( f  e.  (/) ,  g  e.  (/)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } ) )
49 mpt20 6215 . . . . 5  |-  ( f  e.  (/) ,  g  e.  (/)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )  =  (/)
5048, 49syl6eq 2344 . . . 4  |-  ( -.  ( C  e.  Cat  /\  D  e.  Cat )  ->  ( f  e.  ( C  Func  D ) ,  g  e.  ( C  Func  D )  |->  [_ ( 1st `  f )  /  r ]_ [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  B  ( ( r `  x ) J ( s `  x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )  =  (/) )
5143, 50eqtr4d 2331 . . 3  |-  ( -.  ( C  e.  Cat  /\  D  e.  Cat )  ->  ( C Nat  D )  =  ( f  e.  ( C  Func  D
) ,  g  e.  ( C  Func  D
)  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } ) )
5237, 51pm2.61i 156 . 2  |-  ( C Nat 
D )  =  ( f  e.  ( C 
Func  D ) ,  g  e.  ( C  Func  D )  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  B  (
( r `  x
) J ( s `
 x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )
531, 52eqtri 2316 1  |-  N  =  ( f  e.  ( C  Func  D ) ,  g  e.  ( C  Func  D )  |->  [_ ( 1st `  f )  /  r ]_ [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  B  ( ( r `  x ) J ( s `  x ) )  |  A. x  e.  B  A. y  e.  B  A. h  e.  ( x H y ) ( ( a `
 y ) (
<. ( r `  x
) ,  ( r `
 y ) >.  .x.  ( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.  .x.  ( s `  y
) ) ( a `
 x ) ) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   {crab 2560   [_csb 3094   (/)c0 3468   <.cop 3656    X. cxp 4703   dom cdm 4705    Fn wfn 5266   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   1stc1st 6136   2ndc2nd 6137   X_cixp 6833   Basecbs 13164    Hom chom 13235  compcco 13236   Catccat 13582    Func cfunc 13744   Nat cnat 13831
This theorem is referenced by:  isnat  13837  natffn  13839  natrcl  13840  wunnat  13846  natpropd  13866
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-ixp 6834  df-func 13748  df-nat 13833
  Copyright terms: Public domain W3C validator