MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nb3grapr Structured version   Unicode version

Theorem nb3grapr 21454
Description: The neighbors of a vertex in a graph with three elements are an unordered pair of the other vertices if and only if all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017.)
Assertion
Ref Expression
nb3grapr  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  A. x  e.  V  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  x )  =  {
y ,  z } ) )
Distinct variable groups:    x, A, y, z    x, B, y, z    x, C, y, z    x, E, y, z    x, V, y, z
Allowed substitution hints:    X( x, y, z)    Y( x, y, z)    Z( x, y, z)

Proof of Theorem nb3grapr
StepHypRef Expression
1 id 20 . . . . . 6  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  -> 
( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E ) )
2 prcom 3874 . . . . . . . . . 10  |-  { A ,  B }  =  { B ,  A }
32eleq1i 2498 . . . . . . . . 9  |-  ( { A ,  B }  e.  ran  E  <->  { B ,  A }  e.  ran  E )
4 prcom 3874 . . . . . . . . . 10  |-  { B ,  C }  =  { C ,  B }
54eleq1i 2498 . . . . . . . . 9  |-  ( { B ,  C }  e.  ran  E  <->  { C ,  B }  e.  ran  E )
6 prcom 3874 . . . . . . . . . 10  |-  { C ,  A }  =  { A ,  C }
76eleq1i 2498 . . . . . . . . 9  |-  ( { C ,  A }  e.  ran  E  <->  { A ,  C }  e.  ran  E )
83, 5, 73anbi123i 1142 . . . . . . . 8  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  ( { B ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E  /\  { A ,  C }  e.  ran  E ) )
9 3anrot 941 . . . . . . . 8  |-  ( ( { A ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E )  <->  ( { B ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E  /\  { A ,  C }  e.  ran  E ) )
108, 9bitr4i 244 . . . . . . 7  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  ( { A ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) )
1110a1i 11 . . . . . 6  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  ( { A ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) )
121, 11biadan2 624 . . . . 5  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  /\  ( { A ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) )
13 an6 1263 . . . . 5  |-  ( ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  /\  ( { A ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) )  <-> 
( ( { A ,  B }  e.  ran  E  /\  { A ,  C }  e.  ran  E )  /\  ( { B ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E )  /\  ( { C ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) )
1412, 13bitri 241 . . . 4  |-  ( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  ( ( { A ,  B }  e.  ran  E  /\  { A ,  C }  e.  ran  E )  /\  ( { B ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E )  /\  ( { C ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) )
1514a1i 11 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  ( ( { A ,  B }  e.  ran  E  /\  { A ,  C }  e.  ran  E )  /\  ( { B ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E )  /\  ( { C ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) ) )
16 nb3graprlem1 21452 . . . . 5  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E ) )  ->  (
( <. V ,  E >. Neighbors  A )  =  { B ,  C }  <->  ( { A ,  B }  e.  ran  E  /\  { A ,  C }  e.  ran  E ) ) )
17 3anrot 941 . . . . . . 7  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  <->  ( B  e.  Y  /\  C  e.  Z  /\  A  e.  X )
)
1817biimpi 187 . . . . . 6  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( B  e.  Y  /\  C  e.  Z  /\  A  e.  X
) )
19 tprot 3891 . . . . . . . . 9  |-  { A ,  B ,  C }  =  { B ,  C ,  A }
2019eqeq2i 2445 . . . . . . . 8  |-  ( V  =  { A ,  B ,  C }  <->  V  =  { B ,  C ,  A }
)
2120biimpi 187 . . . . . . 7  |-  ( V  =  { A ,  B ,  C }  ->  V  =  { B ,  C ,  A }
)
2221anim1i 552 . . . . . 6  |-  ( ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  -> 
( V  =  { B ,  C ,  A }  /\  V USGrph  E
) )
23 nb3graprlem1 21452 . . . . . 6  |-  ( ( ( B  e.  Y  /\  C  e.  Z  /\  A  e.  X
)  /\  ( V  =  { B ,  C ,  A }  /\  V USGrph  E ) )  ->  (
( <. V ,  E >. Neighbors  B )  =  { C ,  A }  <->  ( { B ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E ) ) )
2418, 22, 23syl2an 464 . . . . 5  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E ) )  ->  (
( <. V ,  E >. Neighbors  B )  =  { C ,  A }  <->  ( { B ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E ) ) )
25 3anrot 941 . . . . . . 7  |-  ( ( C  e.  Z  /\  A  e.  X  /\  B  e.  Y )  <->  ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )
)
2625biimpri 198 . . . . . 6  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( C  e.  Z  /\  A  e.  X  /\  B  e.  Y
) )
27 tprot 3891 . . . . . . . . . 10  |-  { C ,  A ,  B }  =  { A ,  B ,  C }
2827eqcomi 2439 . . . . . . . . 9  |-  { A ,  B ,  C }  =  { C ,  A ,  B }
2928eqeq2i 2445 . . . . . . . 8  |-  ( V  =  { A ,  B ,  C }  <->  V  =  { C ,  A ,  B }
)
3029biimpi 187 . . . . . . 7  |-  ( V  =  { A ,  B ,  C }  ->  V  =  { C ,  A ,  B }
)
3130anim1i 552 . . . . . 6  |-  ( ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  -> 
( V  =  { C ,  A ,  B }  /\  V USGrph  E
) )
32 nb3graprlem1 21452 . . . . . 6  |-  ( ( ( C  e.  Z  /\  A  e.  X  /\  B  e.  Y
)  /\  ( V  =  { C ,  A ,  B }  /\  V USGrph  E ) )  ->  (
( <. V ,  E >. Neighbors  C )  =  { A ,  B }  <->  ( { C ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) )
3326, 31, 32syl2an 464 . . . . 5  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E ) )  ->  (
( <. V ,  E >. Neighbors  C )  =  { A ,  B }  <->  ( { C ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) )
3416, 24, 333anbi123d 1254 . . . 4  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E ) )  ->  (
( ( <. V ,  E >. Neighbors  A )  =  { B ,  C }  /\  ( <. V ,  E >. Neighbors  B )  =  { C ,  A }  /\  ( <. V ,  E >. Neighbors  C )  =  { A ,  B }
)  <->  ( ( { A ,  B }  e.  ran  E  /\  { A ,  C }  e.  ran  E )  /\  ( { B ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E )  /\  ( { C ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) ) )
35343adant3 977 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( ( <. V ,  E >. Neighbors  A
)  =  { B ,  C }  /\  ( <. V ,  E >. Neighbors  B
)  =  { C ,  A }  /\  ( <. V ,  E >. Neighbors  C
)  =  { A ,  B } )  <->  ( ( { A ,  B }  e.  ran  E  /\  { A ,  C }  e.  ran  E )  /\  ( { B ,  C }  e.  ran  E  /\  { B ,  A }  e.  ran  E )  /\  ( { C ,  A }  e.  ran  E  /\  { C ,  B }  e.  ran  E ) ) ) )
36 nb3graprlem2 21453 . . . 4  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( <. V ,  E >. Neighbors  A )  =  { B ,  C }  <->  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  A )  =  {
y ,  z } ) )
3720anbi1i 677 . . . . 5  |-  ( ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  <->  ( V  =  { B ,  C ,  A }  /\  V USGrph  E ) )
38 necom 2679 . . . . . . 7  |-  ( A  =/=  B  <->  B  =/=  A )
39 necom 2679 . . . . . . 7  |-  ( A  =/=  C  <->  C  =/=  A )
40 biid 228 . . . . . . 7  |-  ( B  =/=  C  <->  B  =/=  C )
4138, 39, 403anbi123i 1142 . . . . . 6  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  <->  ( B  =/=  A  /\  C  =/= 
A  /\  B  =/=  C ) )
42 3anrot 941 . . . . . 6  |-  ( ( B  =/=  C  /\  B  =/=  A  /\  C  =/=  A )  <->  ( B  =/=  A  /\  C  =/= 
A  /\  B  =/=  C ) )
4341, 42bitr4i 244 . . . . 5  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  <->  ( B  =/=  C  /\  B  =/= 
A  /\  C  =/=  A ) )
44 nb3graprlem2 21453 . . . . 5  |-  ( ( ( B  e.  Y  /\  C  e.  Z  /\  A  e.  X
)  /\  ( V  =  { B ,  C ,  A }  /\  V USGrph  E )  /\  ( B  =/=  C  /\  B  =/=  A  /\  C  =/= 
A ) )  -> 
( ( <. V ,  E >. Neighbors  B )  =  { C ,  A }  <->  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  B )  =  {
y ,  z } ) )
4517, 37, 43, 44syl3anb 1227 . . . 4  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( <. V ,  E >. Neighbors  B )  =  { C ,  A }  <->  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  B )  =  {
y ,  z } ) )
46 id 20 . . . . . . 7  |-  ( V  =  { A ,  B ,  C }  ->  V  =  { A ,  B ,  C }
)
4746, 28syl6eq 2483 . . . . . 6  |-  ( V  =  { A ,  B ,  C }  ->  V  =  { C ,  A ,  B }
)
4847anim1i 552 . . . . 5  |-  ( ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  -> 
( V  =  { C ,  A ,  B }  /\  V USGrph  E
) )
49 3anrot 941 . . . . . . 7  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  <->  ( A  =/=  C  /\  B  =/= 
C  /\  A  =/=  B ) )
50 necom 2679 . . . . . . . 8  |-  ( B  =/=  C  <->  C  =/=  B )
51 biid 228 . . . . . . . 8  |-  ( A  =/=  B  <->  A  =/=  B )
5239, 50, 513anbi123i 1142 . . . . . . 7  |-  ( ( A  =/=  C  /\  B  =/=  C  /\  A  =/=  B )  <->  ( C  =/=  A  /\  C  =/= 
B  /\  A  =/=  B ) )
5349, 52bitri 241 . . . . . 6  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  <->  ( C  =/=  A  /\  C  =/= 
B  /\  A  =/=  B ) )
5453biimpi 187 . . . . 5  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  ( C  =/=  A  /\  C  =/=  B  /\  A  =/= 
B ) )
55 nb3graprlem2 21453 . . . . 5  |-  ( ( ( C  e.  Z  /\  A  e.  X  /\  B  e.  Y
)  /\  ( V  =  { C ,  A ,  B }  /\  V USGrph  E )  /\  ( C  =/=  A  /\  C  =/=  B  /\  A  =/= 
B ) )  -> 
( ( <. V ,  E >. Neighbors  C )  =  { A ,  B }  <->  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  C )  =  {
y ,  z } ) )
5626, 48, 54, 55syl3an 1226 . . . 4  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( <. V ,  E >. Neighbors  C )  =  { A ,  B }  <->  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  C )  =  {
y ,  z } ) )
5736, 45, 563anbi123d 1254 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( ( <. V ,  E >. Neighbors  A
)  =  { B ,  C }  /\  ( <. V ,  E >. Neighbors  B
)  =  { C ,  A }  /\  ( <. V ,  E >. Neighbors  C
)  =  { A ,  B } )  <->  ( E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  A )  =  {
y ,  z }  /\  E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  B
)  =  { y ,  z }  /\  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  C )  =  {
y ,  z } ) ) )
5815, 35, 573bitr2d 273 . 2  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  ( E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  A
)  =  { y ,  z }  /\  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  B )  =  {
y ,  z }  /\  E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  C
)  =  { y ,  z } ) ) )
59 oveq2 6081 . . . . . 6  |-  ( x  =  A  ->  ( <. V ,  E >. Neighbors  x
)  =  ( <. V ,  E >. Neighbors  A
) )
6059eqeq1d 2443 . . . . 5  |-  ( x  =  A  ->  (
( <. V ,  E >. Neighbors  x )  =  {
y ,  z }  <-> 
( <. V ,  E >. Neighbors  A )  =  {
y ,  z } ) )
61602rexbidv 2740 . . . 4  |-  ( x  =  A  ->  ( E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  x )  =  {
y ,  z }  <->  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  A )  =  {
y ,  z } ) )
62 oveq2 6081 . . . . . 6  |-  ( x  =  B  ->  ( <. V ,  E >. Neighbors  x
)  =  ( <. V ,  E >. Neighbors  B
) )
6362eqeq1d 2443 . . . . 5  |-  ( x  =  B  ->  (
( <. V ,  E >. Neighbors  x )  =  {
y ,  z }  <-> 
( <. V ,  E >. Neighbors  B )  =  {
y ,  z } ) )
64632rexbidv 2740 . . . 4  |-  ( x  =  B  ->  ( E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  x )  =  {
y ,  z }  <->  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  B )  =  {
y ,  z } ) )
65 oveq2 6081 . . . . . 6  |-  ( x  =  C  ->  ( <. V ,  E >. Neighbors  x
)  =  ( <. V ,  E >. Neighbors  C
) )
6665eqeq1d 2443 . . . . 5  |-  ( x  =  C  ->  (
( <. V ,  E >. Neighbors  x )  =  {
y ,  z }  <-> 
( <. V ,  E >. Neighbors  C )  =  {
y ,  z } ) )
67662rexbidv 2740 . . . 4  |-  ( x  =  C  ->  ( E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  x )  =  {
y ,  z }  <->  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  C )  =  {
y ,  z } ) )
6861, 64, 67raltpg 3851 . . 3  |-  ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z )  ->  ( A. x  e. 
{ A ,  B ,  C } E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z }  <->  ( E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  A )  =  {
y ,  z }  /\  E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  B
)  =  { y ,  z }  /\  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  C )  =  {
y ,  z } ) ) )
69683ad2ant1 978 . 2  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( A. x  e. 
{ A ,  B ,  C } E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z }  <->  ( E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  A )  =  {
y ,  z }  /\  E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  B
)  =  { y ,  z }  /\  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  C )  =  {
y ,  z } ) ) )
70 raleq 2896 . . . . 5  |-  ( V  =  { A ,  B ,  C }  ->  ( A. x  e.  V  E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z }  <->  A. x  e.  { A ,  B ,  C } E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z } ) )
7170bicomd 193 . . . 4  |-  ( V  =  { A ,  B ,  C }  ->  ( A. x  e. 
{ A ,  B ,  C } E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z }  <->  A. x  e.  V  E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z } ) )
7271adantr 452 . . 3  |-  ( ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  -> 
( A. x  e. 
{ A ,  B ,  C } E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z }  <->  A. x  e.  V  E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z } ) )
73723ad2ant2 979 . 2  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( A. x  e. 
{ A ,  B ,  C } E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z }  <->  A. x  e.  V  E. y  e.  V  E. z  e.  ( V  \  {
y } ) (
<. V ,  E >. Neighbors  x
)  =  { y ,  z } ) )
7458, 69, 733bitr2d 273 1  |-  ( ( ( A  e.  X  /\  B  e.  Y  /\  C  e.  Z
)  /\  ( V  =  { A ,  B ,  C }  /\  V USGrph  E )  /\  ( A  =/=  B  /\  A  =/=  C  /\  B  =/= 
C ) )  -> 
( ( { A ,  B }  e.  ran  E  /\  { B ,  C }  e.  ran  E  /\  { C ,  A }  e.  ran  E )  <->  A. x  e.  V  E. y  e.  V  E. z  e.  ( V  \  { y } ) ( <. V ,  E >. Neighbors  x )  =  {
y ,  z } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698    \ cdif 3309   {csn 3806   {cpr 3807   {ctp 3808   <.cop 3809   class class class wbr 4204   ran crn 4871  (class class class)co 6073   USGrph cusg 21357   Neighbors cnbgra 21422
This theorem is referenced by:  cusgra3vnbpr  21466
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-hash 11611  df-usgra 21359  df-nbgra 21425
  Copyright terms: Public domain W3C validator