MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbi2 Structured version   Unicode version

Theorem nbi2 863
Description: Two ways to express "exclusive or." (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 24-Jan-2013.)
Assertion
Ref Expression
nbi2  |-  ( -.  ( ph  <->  ps )  <->  ( ( ph  \/  ps )  /\  -.  ( ph  /\ 
ps ) ) )

Proof of Theorem nbi2
StepHypRef Expression
1 xor3 347 . 2  |-  ( -.  ( ph  <->  ps )  <->  (
ph 
<->  -.  ps ) )
2 pm5.17 859 . 2  |-  ( ( ( ph  \/  ps )  /\  -.  ( ph  /\ 
ps ) )  <->  ( ph  <->  -. 
ps ) )
31, 2bitr4i 244 1  |-  ( -.  ( ph  <->  ps )  <->  ( ( ph  \/  ps )  /\  -.  ( ph  /\ 
ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    \/ wo 358    /\ wa 359
This theorem is referenced by:  xor2  1319  nmogtmnf  22271  nmopgtmnf  23371
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361
  Copyright terms: Public domain W3C validator