MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncanth Unicode version

Theorem ncanth 6311
Description: Cantor's theorem fails for the universal class (which is not a set but a proper class by vprc 4168). Specifically, the identity function maps the universe onto its power class. Compare canth 6310 that works for sets. See also the remark in ru 3003 about NF, in which Cantor's theorem fails for sets that are "too large." This theorem gives some intuition behind that failure: in NF the universal class is a set, and it equals its own power set. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
ncanth  |-  _I  : _V -onto-> ~P _V

Proof of Theorem ncanth
StepHypRef Expression
1 f1ovi 5528 . . 3  |-  _I  : _V
-1-1-onto-> _V
2 pwv 3842 . . . 4  |-  ~P _V  =  _V
3 f1oeq3 5481 . . . 4  |-  ( ~P _V  =  _V  ->  (  _I  : _V -1-1-onto-> ~P _V  <->  _I  : _V -1-1-onto-> _V ) )
42, 3ax-mp 8 . . 3  |-  (  _I  : _V -1-1-onto-> ~P _V  <->  _I  : _V -1-1-onto-> _V )
51, 4mpbir 200 . 2  |-  _I  : _V
-1-1-onto-> ~P _V
6 f1ofo 5495 . 2  |-  (  _I  : _V -1-1-onto-> ~P _V  ->  _I  : _V -onto-> ~P _V )
75, 6ax-mp 8 1  |-  _I  : _V -onto-> ~P _V
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1632   _Vcvv 2801   ~Pcpw 3638    _I cid 4320   -onto->wfo 5269   -1-1-onto->wf1o 5270
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278
  Copyright terms: Public domain W3C validator