MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nconsubb Unicode version

Theorem nconsubb 17408
Description: Disconnectedness for a subspace. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
nconsubb.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
nconsubb.3  |-  ( ph  ->  A  C_  X )
nconsubb.4  |-  ( ph  ->  U  e.  J )
nconsubb.5  |-  ( ph  ->  V  e.  J )
nconsubb.6  |-  ( ph  ->  ( U  i^i  A
)  =/=  (/) )
nconsubb.7  |-  ( ph  ->  ( V  i^i  A
)  =/=  (/) )
nconsubb.8  |-  ( ph  ->  ( ( U  i^i  V )  i^i  A )  =  (/) )
nconsubb.9  |-  ( ph  ->  A  C_  ( U  u.  V ) )
Assertion
Ref Expression
nconsubb  |-  ( ph  ->  -.  ( Jt  A )  e.  Con )

Proof of Theorem nconsubb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nconsubb.9 . 2  |-  ( ph  ->  A  C_  ( U  u.  V ) )
2 nconsubb.2 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
3 nconsubb.3 . . . 4  |-  ( ph  ->  A  C_  X )
4 consuba 17405 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
( Jt  A )  e.  Con  <->  A. x  e.  J  A. y  e.  J  (
( ( x  i^i 
A )  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  ->  ( ( x  u.  y )  i^i  A )  =/= 
A ) ) )
52, 3, 4syl2anc 643 . . 3  |-  ( ph  ->  ( ( Jt  A )  e.  Con  <->  A. x  e.  J  A. y  e.  J  ( (
( x  i^i  A
)  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  ->  ( ( x  u.  y )  i^i  A )  =/= 
A ) ) )
6 nconsubb.6 . . . . 5  |-  ( ph  ->  ( U  i^i  A
)  =/=  (/) )
7 nconsubb.7 . . . . 5  |-  ( ph  ->  ( V  i^i  A
)  =/=  (/) )
8 nconsubb.8 . . . . 5  |-  ( ph  ->  ( ( U  i^i  V )  i^i  A )  =  (/) )
96, 7, 83jca 1134 . . . 4  |-  ( ph  ->  ( ( U  i^i  A )  =/=  (/)  /\  ( V  i^i  A )  =/=  (/)  /\  ( ( U  i^i  V )  i^i 
A )  =  (/) ) )
10 nconsubb.4 . . . . 5  |-  ( ph  ->  U  e.  J )
11 nconsubb.5 . . . . 5  |-  ( ph  ->  V  e.  J )
12 ineq1 3479 . . . . . . . . 9  |-  ( x  =  U  ->  (
x  i^i  A )  =  ( U  i^i  A ) )
1312neeq1d 2564 . . . . . . . 8  |-  ( x  =  U  ->  (
( x  i^i  A
)  =/=  (/)  <->  ( U  i^i  A )  =/=  (/) ) )
14 ineq1 3479 . . . . . . . . . 10  |-  ( x  =  U  ->  (
x  i^i  y )  =  ( U  i^i  y ) )
1514ineq1d 3485 . . . . . . . . 9  |-  ( x  =  U  ->  (
( x  i^i  y
)  i^i  A )  =  ( ( U  i^i  y )  i^i 
A ) )
1615eqeq1d 2396 . . . . . . . 8  |-  ( x  =  U  ->  (
( ( x  i^i  y )  i^i  A
)  =  (/)  <->  ( ( U  i^i  y )  i^i 
A )  =  (/) ) )
1713, 163anbi13d 1256 . . . . . . 7  |-  ( x  =  U  ->  (
( ( x  i^i 
A )  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i  A )  =  (/) )  <->  ( ( U  i^i  A )  =/=  (/)  /\  ( y  i^i 
A )  =/=  (/)  /\  (
( U  i^i  y
)  i^i  A )  =  (/) ) ) )
18 uneq1 3438 . . . . . . . . 9  |-  ( x  =  U  ->  (
x  u.  y )  =  ( U  u.  y ) )
1918ineq1d 3485 . . . . . . . 8  |-  ( x  =  U  ->  (
( x  u.  y
)  i^i  A )  =  ( ( U  u.  y )  i^i 
A ) )
2019neeq1d 2564 . . . . . . 7  |-  ( x  =  U  ->  (
( ( x  u.  y )  i^i  A
)  =/=  A  <->  ( ( U  u.  y )  i^i  A )  =/=  A
) )
2117, 20imbi12d 312 . . . . . 6  |-  ( x  =  U  ->  (
( ( ( x  i^i  A )  =/=  (/)  /\  ( y  i^i 
A )  =/=  (/)  /\  (
( x  i^i  y
)  i^i  A )  =  (/) )  ->  (
( x  u.  y
)  i^i  A )  =/=  A )  <->  ( (
( U  i^i  A
)  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( U  i^i  y )  i^i  A )  =  (/) )  ->  ( ( U  u.  y )  i^i  A )  =/= 
A ) ) )
22 ineq1 3479 . . . . . . . . 9  |-  ( y  =  V  ->  (
y  i^i  A )  =  ( V  i^i  A ) )
2322neeq1d 2564 . . . . . . . 8  |-  ( y  =  V  ->  (
( y  i^i  A
)  =/=  (/)  <->  ( V  i^i  A )  =/=  (/) ) )
24 ineq2 3480 . . . . . . . . . 10  |-  ( y  =  V  ->  ( U  i^i  y )  =  ( U  i^i  V
) )
2524ineq1d 3485 . . . . . . . . 9  |-  ( y  =  V  ->  (
( U  i^i  y
)  i^i  A )  =  ( ( U  i^i  V )  i^i 
A ) )
2625eqeq1d 2396 . . . . . . . 8  |-  ( y  =  V  ->  (
( ( U  i^i  y )  i^i  A
)  =  (/)  <->  ( ( U  i^i  V )  i^i 
A )  =  (/) ) )
2723, 263anbi23d 1257 . . . . . . 7  |-  ( y  =  V  ->  (
( ( U  i^i  A )  =/=  (/)  /\  (
y  i^i  A )  =/=  (/)  /\  ( ( U  i^i  y )  i^i  A )  =  (/) )  <->  ( ( U  i^i  A )  =/=  (/)  /\  ( V  i^i  A )  =/=  (/)  /\  (
( U  i^i  V
)  i^i  A )  =  (/) ) ) )
28 dfss1 3489 . . . . . . . . 9  |-  ( A 
C_  ( U  u.  y )  <->  ( ( U  u.  y )  i^i  A )  =  A )
2928necon3bbii 2582 . . . . . . . 8  |-  ( -.  A  C_  ( U  u.  y )  <->  ( ( U  u.  y )  i^i  A )  =/=  A
)
30 uneq2 3439 . . . . . . . . . 10  |-  ( y  =  V  ->  ( U  u.  y )  =  ( U  u.  V ) )
3130sseq2d 3320 . . . . . . . . 9  |-  ( y  =  V  ->  ( A  C_  ( U  u.  y )  <->  A  C_  ( U  u.  V )
) )
3231notbid 286 . . . . . . . 8  |-  ( y  =  V  ->  ( -.  A  C_  ( U  u.  y )  <->  -.  A  C_  ( U  u.  V
) ) )
3329, 32syl5bbr 251 . . . . . . 7  |-  ( y  =  V  ->  (
( ( U  u.  y )  i^i  A
)  =/=  A  <->  -.  A  C_  ( U  u.  V
) ) )
3427, 33imbi12d 312 . . . . . 6  |-  ( y  =  V  ->  (
( ( ( U  i^i  A )  =/=  (/)  /\  ( y  i^i 
A )  =/=  (/)  /\  (
( U  i^i  y
)  i^i  A )  =  (/) )  ->  (
( U  u.  y
)  i^i  A )  =/=  A )  <->  ( (
( U  i^i  A
)  =/=  (/)  /\  ( V  i^i  A )  =/=  (/)  /\  ( ( U  i^i  V )  i^i 
A )  =  (/) )  ->  -.  A  C_  ( U  u.  V )
) ) )
3521, 34rspc2v 3002 . . . . 5  |-  ( ( U  e.  J  /\  V  e.  J )  ->  ( A. x  e.  J  A. y  e.  J  ( ( ( x  i^i  A )  =/=  (/)  /\  ( y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i 
A )  =  (/) )  ->  ( ( x  u.  y )  i^i 
A )  =/=  A
)  ->  ( (
( U  i^i  A
)  =/=  (/)  /\  ( V  i^i  A )  =/=  (/)  /\  ( ( U  i^i  V )  i^i 
A )  =  (/) )  ->  -.  A  C_  ( U  u.  V )
) ) )
3610, 11, 35syl2anc 643 . . . 4  |-  ( ph  ->  ( A. x  e.  J  A. y  e.  J  ( ( ( x  i^i  A )  =/=  (/)  /\  ( y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i 
A )  =  (/) )  ->  ( ( x  u.  y )  i^i 
A )  =/=  A
)  ->  ( (
( U  i^i  A
)  =/=  (/)  /\  ( V  i^i  A )  =/=  (/)  /\  ( ( U  i^i  V )  i^i 
A )  =  (/) )  ->  -.  A  C_  ( U  u.  V )
) ) )
379, 36mpid 39 . . 3  |-  ( ph  ->  ( A. x  e.  J  A. y  e.  J  ( ( ( x  i^i  A )  =/=  (/)  /\  ( y  i^i  A )  =/=  (/)  /\  ( ( x  i^i  y )  i^i 
A )  =  (/) )  ->  ( ( x  u.  y )  i^i 
A )  =/=  A
)  ->  -.  A  C_  ( U  u.  V
) ) )
385, 37sylbid 207 . 2  |-  ( ph  ->  ( ( Jt  A )  e.  Con  ->  -.  A  C_  ( U  u.  V ) ) )
391, 38mt2d 111 1  |-  ( ph  ->  -.  ( Jt  A )  e.  Con )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   A.wral 2650    u. cun 3262    i^i cin 3263    C_ wss 3264   (/)c0 3572   ` cfv 5395  (class class class)co 6021   ↾t crest 13576  TopOnctopon 16883   Conccon 17396
This theorem is referenced by:  iunconlem  17412  clscon  17415  reconnlem1  18729
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-recs 6570  df-rdg 6605  df-oadd 6665  df-er 6842  df-en 7047  df-fin 7050  df-fi 7352  df-rest 13578  df-topgen 13595  df-top 16887  df-bases 16889  df-topon 16890  df-cld 17007  df-con 17397
  Copyright terms: Public domain W3C validator