Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovass Unicode version

Theorem ndmaovass 28066
Description: Any operation is associative outside its domain. In contrast to ndmovass 6008 where it is required that the operation's domain doesn't contain the empty set ( -.  (/)  e.  S), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
ndmaov.1  |-  dom  F  =  ( S  X.  S )
Assertion
Ref Expression
ndmaovass  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  -> (( (( A F B))  F C))  = (( A F (( B F C)) ))  )

Proof of Theorem ndmaovass
StepHypRef Expression
1 ndmaov.1 . . . . . . 7  |-  dom  F  =  ( S  X.  S )
21eleq2i 2347 . . . . . 6  |-  ( <. (( A F B))  ,  C >.  e.  dom  F  <->  <. (( A F B))  ,  C >.  e.  ( S  X.  S
) )
3 opelxp 4719 . . . . . 6  |-  ( <. (( A F B))  ,  C >.  e.  ( S  X.  S )  <->  ( (( A F B))  e.  S  /\  C  e.  S
) )
42, 3bitri 240 . . . . 5  |-  ( <. (( A F B))  ,  C >.  e.  dom  F  <->  ( (( A F B))  e.  S  /\  C  e.  S
) )
5 aovvdm 28045 . . . . . . 7  |-  ( (( A F B))  e.  S  -> 
<. A ,  B >.  e. 
dom  F )
61eleq2i 2347 . . . . . . . . 9  |-  ( <. A ,  B >.  e. 
dom  F  <->  <. A ,  B >.  e.  ( S  X.  S ) )
7 opelxp 4719 . . . . . . . . 9  |-  ( <. A ,  B >.  e.  ( S  X.  S
)  <->  ( A  e.  S  /\  B  e.  S ) )
86, 7bitri 240 . . . . . . . 8  |-  ( <. A ,  B >.  e. 
dom  F  <->  ( A  e.  S  /\  B  e.  S ) )
9 df-3an 936 . . . . . . . . 9  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  <->  ( ( A  e.  S  /\  B  e.  S
)  /\  C  e.  S ) )
109simplbi2 608 . . . . . . . 8  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( C  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) )
118, 10sylbi 187 . . . . . . 7  |-  ( <. A ,  B >.  e. 
dom  F  ->  ( C  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
) )
125, 11syl 15 . . . . . 6  |-  ( (( A F B))  e.  S  ->  ( C  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) )
1312imp 418 . . . . 5  |-  ( ( (( A F B))  e.  S  /\  C  e.  S
)  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )
144, 13sylbi 187 . . . 4  |-  ( <. (( A F B))  ,  C >.  e.  dom  F  -> 
( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )
1514con3i 127 . . 3  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  ->  -.  <. (( A F B))  ,  C >.  e. 
dom  F )
16 ndmaov 28043 . . 3  |-  ( -. 
<. (( A F B))  ,  C >.  e.  dom  F  -> (( (( A F B))  F C))  =  _V )
1715, 16syl 15 . 2  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  -> (( (( A F B))  F C))  =  _V )
181eleq2i 2347 . . . . . . 7  |-  ( <. A , (( B F C))  >.  e.  dom  F  <->  <. A , (( B F C))  >.  e.  ( S  X.  S ) )
19 opelxp 4719 . . . . . . 7  |-  ( <. A , (( B F C))  >.  e.  ( S  X.  S )  <->  ( A  e.  S  /\ (( B F C))  e.  S ) )
2018, 19bitri 240 . . . . . 6  |-  ( <. A , (( B F C))  >.  e.  dom  F  <->  ( A  e.  S  /\ (( B F C))  e.  S
) )
21 aovvdm 28045 . . . . . . . 8  |-  ( (( B F C))  e.  S  -> 
<. B ,  C >.  e. 
dom  F )
221eleq2i 2347 . . . . . . . . . 10  |-  ( <. B ,  C >.  e. 
dom  F  <->  <. B ,  C >.  e.  ( S  X.  S ) )
23 opelxp 4719 . . . . . . . . . 10  |-  ( <. B ,  C >.  e.  ( S  X.  S
)  <->  ( B  e.  S  /\  C  e.  S ) )
2422, 23bitri 240 . . . . . . . . 9  |-  ( <. B ,  C >.  e. 
dom  F  <->  ( B  e.  S  /\  C  e.  S ) )
25 3anass 938 . . . . . . . . . . . 12  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  <->  ( A  e.  S  /\  ( B  e.  S  /\  C  e.  S
) ) )
2625biimpri 197 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  ( B  e.  S  /\  C  e.  S
) )  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
)
2726a1d 22 . . . . . . . . . 10  |-  ( ( A  e.  S  /\  ( B  e.  S  /\  C  e.  S
) )  ->  ( <. A , (( B F C))  >.  e.  dom  F  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) )
2827expcom 424 . . . . . . . . 9  |-  ( ( B  e.  S  /\  C  e.  S )  ->  ( A  e.  S  ->  ( <. A , (( B F C))  >.  e.  dom  F  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) ) ) )
2924, 28sylbi 187 . . . . . . . 8  |-  ( <. B ,  C >.  e. 
dom  F  ->  ( A  e.  S  ->  ( <. A , (( B F C))  >.  e.  dom  F  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) ) )
3021, 29syl 15 . . . . . . 7  |-  ( (( B F C))  e.  S  ->  ( A  e.  S  ->  ( <. A , (( B F C))  >.  e.  dom  F  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) ) ) )
3130impcom 419 . . . . . 6  |-  ( ( A  e.  S  /\ (( B F C))  e.  S
)  ->  ( <. A , (( B F C)) 
>.  e.  dom  F  -> 
( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) )
3220, 31sylbi 187 . . . . 5  |-  ( <. A , (( B F C))  >.  e.  dom  F  ->  ( <. A , (( B F C))  >.  e.  dom  F  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) ) )
3332pm2.43i 43 . . . 4  |-  ( <. A , (( B F C))  >.  e.  dom  F  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )
3433con3i 127 . . 3  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  ->  -.  <. A , (( B F C))  >.  e.  dom  F )
35 ndmaov 28043 . . 3  |-  ( -. 
<. A , (( B F C))  >.  e.  dom  F  -> (( A F (( B F C)) ))  =  _V )
3634, 35syl 15 . 2  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  -> (( A F (( B F C)) ))  =  _V )
3717, 36eqtr4d 2318 1  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  -> (( (( A F B))  F C))  = (( A F (( B F C)) ))  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   _Vcvv 2788   <.cop 3643    X. cxp 4687   dom cdm 4689   ((caov 27973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fv 5263  df-dfat 27974  df-afv 27975  df-aov 27976
  Copyright terms: Public domain W3C validator