Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovdistr Unicode version

Theorem ndmaovdistr 28175
Description: Any operation is distributive outside its domain. In contrast to ndmovdistr 6025 where it is required that the operation's domain doesn't contain the empty set (
-.  (/)  e.  S), no additional assumption is required. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
ndmaov.1  |-  dom  F  =  ( S  X.  S )
ndmaov.6  |-  dom  G  =  ( S  X.  S )
Assertion
Ref Expression
ndmaovdistr  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  -> (( A G (( B F C)) ))  = (( (( A G B))  F (( A G C)) ))  )

Proof of Theorem ndmaovdistr
StepHypRef Expression
1 ndmaov.6 . . . . . . 7  |-  dom  G  =  ( S  X.  S )
21eleq2i 2360 . . . . . 6  |-  ( <. A , (( B F C))  >.  e.  dom  G  <->  <. A , (( B F C))  >.  e.  ( S  X.  S ) )
3 opelxp 4735 . . . . . 6  |-  ( <. A , (( B F C))  >.  e.  ( S  X.  S )  <->  ( A  e.  S  /\ (( B F C))  e.  S ) )
42, 3bitri 240 . . . . 5  |-  ( <. A , (( B F C))  >.  e.  dom  G  <->  ( A  e.  S  /\ (( B F C))  e.  S
) )
5 aovvdm 28153 . . . . . . 7  |-  ( (( B F C))  e.  S  -> 
<. B ,  C >.  e. 
dom  F )
6 ndmaov.1 . . . . . . . . . 10  |-  dom  F  =  ( S  X.  S )
76eleq2i 2360 . . . . . . . . 9  |-  ( <. B ,  C >.  e. 
dom  F  <->  <. B ,  C >.  e.  ( S  X.  S ) )
8 opelxp 4735 . . . . . . . . 9  |-  ( <. B ,  C >.  e.  ( S  X.  S
)  <->  ( B  e.  S  /\  C  e.  S ) )
97, 8bitri 240 . . . . . . . 8  |-  ( <. B ,  C >.  e. 
dom  F  <->  ( B  e.  S  /\  C  e.  S ) )
10 3anass 938 . . . . . . . . 9  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  <->  ( A  e.  S  /\  ( B  e.  S  /\  C  e.  S
) ) )
1110simplbi2com 1364 . . . . . . . 8  |-  ( ( B  e.  S  /\  C  e.  S )  ->  ( A  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) )
129, 11sylbi 187 . . . . . . 7  |-  ( <. B ,  C >.  e. 
dom  F  ->  ( A  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
) )
135, 12syl 15 . . . . . 6  |-  ( (( B F C))  e.  S  ->  ( A  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) )
1413impcom 419 . . . . 5  |-  ( ( A  e.  S  /\ (( B F C))  e.  S
)  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )
154, 14sylbi 187 . . . 4  |-  ( <. A , (( B F C))  >.  e.  dom  G  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )
1615con3i 127 . . 3  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  ->  -.  <. A , (( B F C))  >.  e.  dom  G )
17 ndmaov 28151 . . 3  |-  ( -. 
<. A , (( B F C))  >.  e.  dom  G  -> (( A G (( B F C)) ))  =  _V )
1816, 17syl 15 . 2  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  -> (( A G (( B F C)) ))  =  _V )
196eleq2i 2360 . . . . . 6  |-  ( <. (( A G B))  , (( A G C))  >.  e.  dom  F  <->  <. (( A G B))  , (( A G C))  >.  e.  ( S  X.  S ) )
20 opelxp 4735 . . . . . 6  |-  ( <. (( A G B))  , (( A G C))  >.  e.  ( S  X.  S )  <-> 
( (( A G B))  e.  S  /\ (( A G C))  e.  S
) )
2119, 20bitri 240 . . . . 5  |-  ( <. (( A G B))  , (( A G C))  >.  e.  dom  F  <-> 
( (( A G B))  e.  S  /\ (( A G C))  e.  S
) )
22 aovvdm 28153 . . . . . . 7  |-  ( (( A G B))  e.  S  -> 
<. A ,  B >.  e. 
dom  G )
231eleq2i 2360 . . . . . . . . 9  |-  ( <. A ,  B >.  e. 
dom  G  <->  <. A ,  B >.  e.  ( S  X.  S ) )
24 opelxp 4735 . . . . . . . . 9  |-  ( <. A ,  B >.  e.  ( S  X.  S
)  <->  ( A  e.  S  /\  B  e.  S ) )
2523, 24bitri 240 . . . . . . . 8  |-  ( <. A ,  B >.  e. 
dom  G  <->  ( A  e.  S  /\  B  e.  S ) )
26 aovvdm 28153 . . . . . . . . . 10  |-  ( (( A G C))  e.  S  -> 
<. A ,  C >.  e. 
dom  G )
271eleq2i 2360 . . . . . . . . . . . 12  |-  ( <. A ,  C >.  e. 
dom  G  <->  <. A ,  C >.  e.  ( S  X.  S ) )
28 opelxp 4735 . . . . . . . . . . . 12  |-  ( <. A ,  C >.  e.  ( S  X.  S
)  <->  ( A  e.  S  /\  C  e.  S ) )
2927, 28bitri 240 . . . . . . . . . . 11  |-  ( <. A ,  C >.  e. 
dom  G  <->  ( A  e.  S  /\  C  e.  S ) )
30 simpll 730 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  ( A  e.  S  /\  B  e.  S ) )  ->  A  e.  S )
31 simprr 733 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  ( A  e.  S  /\  B  e.  S ) )  ->  B  e.  S )
32 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  ( A  e.  S  /\  B  e.  S ) )  ->  C  e.  S )
3330, 31, 323jca 1132 . . . . . . . . . . . 12  |-  ( ( ( A  e.  S  /\  C  e.  S
)  /\  ( A  e.  S  /\  B  e.  S ) )  -> 
( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )
3433ex 423 . . . . . . . . . . 11  |-  ( ( A  e.  S  /\  C  e.  S )  ->  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
) )
3529, 34sylbi 187 . . . . . . . . . 10  |-  ( <. A ,  C >.  e. 
dom  G  ->  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) )
3626, 35syl 15 . . . . . . . . 9  |-  ( (( A G C))  e.  S  ->  ( ( A  e.  S  /\  B  e.  S )  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
) )
3736com12 27 . . . . . . . 8  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( (( A G C))  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
) )
3825, 37sylbi 187 . . . . . . 7  |-  ( <. A ,  B >.  e. 
dom  G  ->  ( (( A G C))  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) ) )
3922, 38syl 15 . . . . . 6  |-  ( (( A G B))  e.  S  ->  ( (( A G C))  e.  S  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S )
) )
4039imp 418 . . . . 5  |-  ( ( (( A G B))  e.  S  /\ (( A G C))  e.  S )  -> 
( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )
4121, 40sylbi 187 . . . 4  |-  ( <. (( A G B))  , (( A G C))  >.  e.  dom  F  ->  ( A  e.  S  /\  B  e.  S  /\  C  e.  S ) )
4241con3i 127 . . 3  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  ->  -.  <. (( A G B))  , (( A G C))  >.  e.  dom  F
)
43 ndmaov 28151 . . 3  |-  ( -. 
<. (( A G B))  , (( A G C))  >.  e.  dom  F  -> (( (( A G B))  F (( A G C)) ))  =  _V )
4442, 43syl 15 . 2  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  -> (( (( A G B))  F (( A G C)) )) 
=  _V )
4518, 44eqtr4d 2331 1  |-  ( -.  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
)  -> (( A G (( B F C)) ))  = (( (( A G B))  F (( A G C)) ))  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   _Vcvv 2801   <.cop 3656    X. cxp 4703   dom cdm 4705   ((caov 28076
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-opab 4094  df-xp 4711  df-fv 5279  df-dfat 28077  df-afv 28078  df-aov 28079
  Copyright terms: Public domain W3C validator