Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndmaovg Unicode version

Theorem ndmaovg 27915
Description: The value of an operation outside its domain, analogous to ndmovg 6189. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
ndmaovg  |-  ( ( dom  F  =  ( R  X.  S )  /\  -.  ( A  e.  R  /\  B  e.  S ) )  -> (( A F B))  =  _V )

Proof of Theorem ndmaovg
StepHypRef Expression
1 opelxp 4867 . . . . 5  |-  ( <. A ,  B >.  e.  ( R  X.  S
)  <->  ( A  e.  R  /\  B  e.  S ) )
2 eleq2 2465 . . . . . 6  |-  ( ( R  X.  S )  =  dom  F  -> 
( <. A ,  B >.  e.  ( R  X.  S )  <->  <. A ,  B >.  e.  dom  F
) )
32eqcoms 2407 . . . . 5  |-  ( dom 
F  =  ( R  X.  S )  -> 
( <. A ,  B >.  e.  ( R  X.  S )  <->  <. A ,  B >.  e.  dom  F
) )
41, 3syl5bbr 251 . . . 4  |-  ( dom 
F  =  ( R  X.  S )  -> 
( ( A  e.  R  /\  B  e.  S )  <->  <. A ,  B >.  e.  dom  F
) )
54notbid 286 . . 3  |-  ( dom 
F  =  ( R  X.  S )  -> 
( -.  ( A  e.  R  /\  B  e.  S )  <->  -.  <. A ,  B >.  e.  dom  F
) )
65biimpa 471 . 2  |-  ( ( dom  F  =  ( R  X.  S )  /\  -.  ( A  e.  R  /\  B  e.  S ) )  ->  -.  <. A ,  B >.  e.  dom  F )
7 ndmaov 27914 . 2  |-  ( -. 
<. A ,  B >.  e. 
dom  F  -> (( A F B))  =  _V )
86, 7syl 16 1  |-  ( ( dom  F  =  ( R  X.  S )  /\  -.  ( A  e.  R  /\  B  e.  S ) )  -> (( A F B))  =  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916   <.cop 3777    X. cxp 4835   dom cdm 4837   ((caov 27840
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-opab 4227  df-xp 4843  df-fv 5421  df-dfat 27841  df-afv 27842  df-aov 27843
  Copyright terms: Public domain W3C validator