MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmima Unicode version

Theorem ndmima 5087
Description: The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
ndmima  |-  ( -.  A  e.  dom  B  ->  ( B " { A } )  =  (/) )

Proof of Theorem ndmima
StepHypRef Expression
1 df-ima 4739 . 2  |-  ( B
" { A }
)  =  ran  ( B  |`  { A }
)
2 dmres 5013 . . . . 5  |-  dom  ( B  |`  { A }
)  =  ( { A }  i^i  dom  B )
3 incom 3395 . . . . 5  |-  ( { A }  i^i  dom  B )  =  ( dom 
B  i^i  { A } )
42, 3eqtri 2336 . . . 4  |-  dom  ( B  |`  { A }
)  =  ( dom 
B  i^i  { A } )
5 disjsn 3727 . . . . 5  |-  ( ( dom  B  i^i  { A } )  =  (/)  <->  -.  A  e.  dom  B )
65biimpri 197 . . . 4  |-  ( -.  A  e.  dom  B  ->  ( dom  B  i^i  { A } )  =  (/) )
74, 6syl5eq 2360 . . 3  |-  ( -.  A  e.  dom  B  ->  dom  ( B  |`  { A } )  =  (/) )
8 dm0rn0 4932 . . 3  |-  ( dom  ( B  |`  { A } )  =  (/)  <->  ran  ( B  |`  { A } )  =  (/) )
97, 8sylib 188 . 2  |-  ( -.  A  e.  dom  B  ->  ran  ( B  |`  { A } )  =  (/) )
101, 9syl5eq 2360 1  |-  ( -.  A  e.  dom  B  ->  ( B " { A } )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1633    e. wcel 1701    i^i cin 3185   (/)c0 3489   {csn 3674   dom cdm 4726   ran crn 4727    |` cres 4728   "cima 4729
This theorem is referenced by:  funfv  5624  dffv2  5630  fpwwe2lem13  8309
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pr 4251
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-br 4061  df-opab 4115  df-xp 4732  df-cnv 4734  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739
  Copyright terms: Public domain W3C validator