MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovcom Structured version   Unicode version

Theorem ndmovcom 6226
Description: Any operation is commutative outside its domain. (Contributed by NM, 24-Aug-1995.)
Hypothesis
Ref Expression
ndmov.1  |-  dom  F  =  ( S  X.  S )
Assertion
Ref Expression
ndmovcom  |-  ( -.  ( A  e.  S  /\  B  e.  S
)  ->  ( A F B )  =  ( B F A ) )

Proof of Theorem ndmovcom
StepHypRef Expression
1 ndmov.1 . . 3  |-  dom  F  =  ( S  X.  S )
21ndmov 6223 . 2  |-  ( -.  ( A  e.  S  /\  B  e.  S
)  ->  ( A F B )  =  (/) )
3 ancom 438 . . 3  |-  ( ( A  e.  S  /\  B  e.  S )  <->  ( B  e.  S  /\  A  e.  S )
)
41ndmov 6223 . . 3  |-  ( -.  ( B  e.  S  /\  A  e.  S
)  ->  ( B F A )  =  (/) )
53, 4sylnbi 298 . 2  |-  ( -.  ( A  e.  S  /\  B  e.  S
)  ->  ( B F A )  =  (/) )
62, 5eqtr4d 2470 1  |-  ( -.  ( A  e.  S  /\  B  e.  S
)  ->  ( A F B )  =  ( B F A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   (/)c0 3620    X. cxp 4868   dom cdm 4870  (class class class)co 6073
This theorem is referenced by:  addcompi  8763  mulcompi  8765  addcompq  8819  addcomnq  8820  mulcompq  8821  mulcomnq  8822  addcompr  8890  mulcompr  8892  addcomsr  8954  mulcomsr  8956  addcomgi  27628
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-xp 4876  df-dm 4880  df-iota 5410  df-fv 5454  df-ov 6076
  Copyright terms: Public domain W3C validator