MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovg Structured version   Unicode version

Theorem ndmovg 6222
Description: The value of an operation outside its domain. (Contributed by NM, 28-Mar-2008.)
Assertion
Ref Expression
ndmovg  |-  ( ( dom  F  =  ( R  X.  S )  /\  -.  ( A  e.  R  /\  B  e.  S ) )  -> 
( A F B )  =  (/) )

Proof of Theorem ndmovg
StepHypRef Expression
1 df-ov 6076 . 2  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2 eleq2 2496 . . . . . 6  |-  ( dom 
F  =  ( R  X.  S )  -> 
( <. A ,  B >.  e.  dom  F  <->  <. A ,  B >.  e.  ( R  X.  S ) ) )
3 opelxp 4900 . . . . . 6  |-  ( <. A ,  B >.  e.  ( R  X.  S
)  <->  ( A  e.  R  /\  B  e.  S ) )
42, 3syl6bb 253 . . . . 5  |-  ( dom 
F  =  ( R  X.  S )  -> 
( <. A ,  B >.  e.  dom  F  <->  ( A  e.  R  /\  B  e.  S ) ) )
54notbid 286 . . . 4  |-  ( dom 
F  =  ( R  X.  S )  -> 
( -.  <. A ,  B >.  e.  dom  F  <->  -.  ( A  e.  R  /\  B  e.  S
) ) )
6 ndmfv 5747 . . . 4  |-  ( -. 
<. A ,  B >.  e. 
dom  F  ->  ( F `
 <. A ,  B >. )  =  (/) )
75, 6syl6bir 221 . . 3  |-  ( dom 
F  =  ( R  X.  S )  -> 
( -.  ( A  e.  R  /\  B  e.  S )  ->  ( F `  <. A ,  B >. )  =  (/) ) )
87imp 419 . 2  |-  ( ( dom  F  =  ( R  X.  S )  /\  -.  ( A  e.  R  /\  B  e.  S ) )  -> 
( F `  <. A ,  B >. )  =  (/) )
91, 8syl5eq 2479 1  |-  ( ( dom  F  =  ( R  X.  S )  /\  -.  ( A  e.  R  /\  B  e.  S ) )  -> 
( A F B )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   (/)c0 3620   <.cop 3809    X. cxp 4868   dom cdm 4870   ` cfv 5446  (class class class)co 6073
This theorem is referenced by:  ndmov  6223  curry1val  6431  curry2val  6435  1div0  9671  iscau2  19222  1div0apr  21754  cshnnn0  28202
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-xp 4876  df-dm 4880  df-iota 5410  df-fv 5454  df-ov 6076
  Copyright terms: Public domain W3C validator