MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovrcl Structured version   Unicode version

Theorem ndmovrcl 6233
Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996.)
Hypotheses
Ref Expression
ndmov.1  |-  dom  F  =  ( S  X.  S )
ndmovrcl.3  |-  -.  (/)  e.  S
Assertion
Ref Expression
ndmovrcl  |-  ( ( A F B )  e.  S  ->  ( A  e.  S  /\  B  e.  S )
)

Proof of Theorem ndmovrcl
StepHypRef Expression
1 ndmovrcl.3 . . 3  |-  -.  (/)  e.  S
2 ndmov.1 . . . . 5  |-  dom  F  =  ( S  X.  S )
32ndmov 6231 . . . 4  |-  ( -.  ( A  e.  S  /\  B  e.  S
)  ->  ( A F B )  =  (/) )
43eleq1d 2502 . . 3  |-  ( -.  ( A  e.  S  /\  B  e.  S
)  ->  ( ( A F B )  e.  S  <->  (/)  e.  S ) )
51, 4mtbiri 295 . 2  |-  ( -.  ( A  e.  S  /\  B  e.  S
)  ->  -.  ( A F B )  e.  S )
65con4i 124 1  |-  ( ( A F B )  e.  S  ->  ( A  e.  S  /\  B  e.  S )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   (/)c0 3628    X. cxp 4876   dom cdm 4878  (class class class)co 6081
This theorem is referenced by:  ndmovass  6235  ndmovdistr  6236  ndmovord  6237  ndmovordi  6238  caovmo  6284  brecop2  6998  eceqoveq  7009  addcanpi  8776  mulcanpi  8777  ordpipq  8819  recmulnq  8841  recclnq  8843  ltexnq  8852  nsmallnq  8854  ltbtwnnq  8855  prlem934  8910  ltaddpr  8911  ltaddpr2  8912  ltexprlem2  8914  ltexprlem3  8915  ltexprlem4  8916  ltexprlem6  8918  ltexprlem7  8919  addcanpr  8923  prlem936  8924  mappsrpr  8983
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-xp 4884  df-dm 4888  df-iota 5418  df-fv 5462  df-ov 6084
  Copyright terms: Public domain W3C validator