MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ne0gt0d Structured version   Unicode version

Theorem ne0gt0d 9203
Description: A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
ltd.1  |-  ( ph  ->  A  e.  RR )
ne0gt0d.2  |-  ( ph  ->  0  <_  A )
ne0gt0d.3  |-  ( ph  ->  A  =/=  0 )
Assertion
Ref Expression
ne0gt0d  |-  ( ph  ->  0  <  A )

Proof of Theorem ne0gt0d
StepHypRef Expression
1 ne0gt0d.3 . 2  |-  ( ph  ->  A  =/=  0 )
2 ltd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ne0gt0d.2 . . 3  |-  ( ph  ->  0  <_  A )
4 ne0gt0 9171 . . 3  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( A  =/=  0  <->  0  <  A ) )
52, 3, 4syl2anc 643 . 2  |-  ( ph  ->  ( A  =/=  0  <->  0  <  A ) )
61, 5mpbid 202 1  |-  ( ph  ->  0  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    e. wcel 1725    =/= wne 2599   class class class wbr 4205   RRcr 8982   0cc0 8983    < clt 9113    <_ cle 9114
This theorem is referenced by:  sqrgt0  12057  absrpcl  12086  sqreulem  12156  efgt0  12697  abvgt0  15909  nmrpcl  18659  lebnumlem1  18979  ipcau2  19184  recxpcl  20559  mulcxp  20569  rlimcnp  20797  lgsdilem  21099  pntleml  21298  xrge0iifhom  24316  cndprobprob  24689  axsegconlem6  25854  axpaschlem  25872  axcontlem2  25897  axcontlem4  25899  axcontlem7  25902  dvreasin  26281
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-i2m1 9051  ax-1ne0 9052  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-op 3816  df-uni 4009  df-br 4206  df-opab 4260  df-mpt 4261  df-id 4491  df-po 4496  df-so 4497  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-er 6898  df-en 7103  df-dom 7104  df-sdom 7105  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119
  Copyright terms: Public domain W3C validator