MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  necon1bbii Unicode version

Theorem necon1bbii 2498
Description: Contrapositive inference for inequality. (Contributed by NM, 17-Mar-2007.)
Hypothesis
Ref Expression
necon1bbii.1  |-  ( A  =/=  B  <->  ph )
Assertion
Ref Expression
necon1bbii  |-  ( -. 
ph 
<->  A  =  B )

Proof of Theorem necon1bbii
StepHypRef Expression
1 df-ne 2448 . . 3  |-  ( A  =/=  B  <->  -.  A  =  B )
2 necon1bbii.1 . . 3  |-  ( A  =/=  B  <->  ph )
31, 2bitr3i 242 . 2  |-  ( -.  A  =  B  <->  ph )
43con1bii 321 1  |-  ( -. 
ph 
<->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    = wceq 1623    =/= wne 2446
This theorem is referenced by:  necon2bbii  2502  rabeq0  3476  intnex  4168  class2set  4178  relimasn  5036  modom  7063  fzo0  10893  vma1  20404  lgsquadlem3  20595  imfstnrelc  25081
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-ne 2448
  Copyright terms: Public domain W3C validator