MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neeqtri Unicode version

Theorem neeqtri 2480
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
neeqtr.1  |-  A  =/= 
B
neeqtr.2  |-  B  =  C
Assertion
Ref Expression
neeqtri  |-  A  =/= 
C

Proof of Theorem neeqtri
StepHypRef Expression
1 neeqtr.1 . 2  |-  A  =/= 
B
2 neeqtr.2 . . 3  |-  B  =  C
32neeq2i 2470 . 2  |-  ( A  =/=  B  <->  A  =/=  C )
41, 3mpbi 199 1  |-  A  =/= 
C
Colors of variables: wff set class
Syntax hints:    = wceq 1632    =/= wne 2459
This theorem is referenced by:  neeqtrri  2482  3netr3  25071
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-11 1727  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-cleq 2289  df-ne 2461
  Copyright terms: Public domain W3C validator