MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negcon1 Unicode version

Theorem negcon1 9342
Description: Negative contraposition law. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
negcon1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  =  B  <->  -u B  =  A ) )

Proof of Theorem negcon1
StepHypRef Expression
1 negcl 9295 . . . 4  |-  ( A  e.  CC  ->  -u A  e.  CC )
2 neg11 9341 . . . 4  |-  ( (
-u A  e.  CC  /\  B  e.  CC )  ->  ( -u -u A  =  -u B  <->  -u A  =  B ) )
31, 2sylan 458 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u -u A  =  -u B  <->  -u A  =  B ) )
4 negneg 9340 . . . . 5  |-  ( A  e.  CC  ->  -u -u A  =  A )
54adantr 452 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u -u A  =  A )
65eqeq1d 2443 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u -u A  =  -u B  <->  A  =  -u B ) )
73, 6bitr3d 247 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  =  B  <->  A  =  -u B
) )
8 eqcom 2437 . 2  |-  ( A  =  -u B  <->  -u B  =  A )
97, 8syl6bb 253 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u A  =  B  <->  -u B  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   CCcc 8977   -ucneg 9281
This theorem is referenced by:  negcon2  9343  negcon1i  9371  negcon1d  9394  elznn0  10285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-riota 6540  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-pnf 9111  df-mnf 9112  df-ltxr 9114  df-sub 9282  df-neg 9283
  Copyright terms: Public domain W3C validator